Qualifying exam - January 2013

Statistical Mechanics

You can use one textbook. Please write legibly and show all steps of your derivations.

Problem 1 [20 points]

For a particular substance it was found that

$$\left(\frac{\partial V}{\partial T}\right)_p = Ape^{-ap},\tag{1}$$

where V is volume, p is pressure, and the coefficients A and a depend only on temperature. Consider an equilibrium process in which the pressure of the substance increases from 0 to p_1 at a constant temperature T.

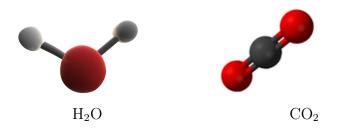
- 1. What is the change in entropy of the substance?
- 2. Compute the amount of heat received by the substance in this process.

Problem 2 [20 points]

An adiabatic rigid cylinder is divided in two compartments by a piston. One compartment is filled with $N_1 = 13$ moles of water vapor at a temperature T_1 and pressure p_1 . The other compartment is filled with $N_2 = 12$ moles of carbon dioxide CO₂ at a temperature $T_2 = 3T_1$ and pressure $p_2 = 2p_1$. Each gas is initially in thermodynamic equilibrium. The piston is removed and the gases mix. After equilibrium has been reached,

- 1. What is the internal energy of the gas mixture in the cylinder?
- 2. What is the temperature of the gas mixture?
- 3. What is the pressure of the gas mixture?

Consider both gases as ideal and treat the molecular rotations and atomic vibrations using classical mechanics.



Problem 3 [10 points]

Consider a system of $N \gg 1$ weakly interacting particles, each having two energy levels: zero with a degeneracy g_1 and ε with a degeneracy g_2 . The particles are identical but distinguishable.

1. Calculate the specific heat C_v of this system.

2. Find the asymptotic expressions for C_v in the limits of high temperatures and low temperatures.

3. Sketch C_v as a function of temperature.

Problem 4 [25 points]

Consider a quantum gas of ultra-relativistic particles (bosons or fermions) with the energymomentum relation $\varepsilon = cp$, where c is the speed of light. Show that regardless of temperature

$$PV = \frac{E}{3},\tag{2}$$

where P is pressure, V is volume of the gas and E is its total energy.

Does this result remain valid for an ultra-relativistic gas in the Maxwell-Boltzmann statistics?

Problem 5 [25 points]

Calculate the average energy per phonon (total energy divided by the number of phonons) in a Debye solid in the limit of low temperatures, i.e. $T \ll T_D$ (T_D being the Debye temperature).

You may need to use Riemann's zeta function

$$\varsigma(n) = \frac{1}{(n-1)!} \int_0^\infty \frac{x^{n-1}}{e^x - 1} dx$$

with $\varsigma(2) = \pi^2/6$, $\varsigma(3) \approx 1.202$ and $\varsigma(4) = \pi^4/90$.