
Classical Mechanics Qualifier (January 2013) 
George Mason University 
 
You will have THREE hours to complete the exam. 
You are allowed to use your graduate textbook during the exam. 
 
Short Problems – do both (15 points each) 
 
Problem 1  

 
A thin uniform disc with radius a  and mass m  is rotating wth 
a constant angular velocity ω  about the fixed vertical axis 
passing through its center.  ω  is inclined at a constant angle α  
with respect to the symmetry axis z’ of the disc.  What is the 
magnitude and direction of the torque with respect to the lab 
frame needed to keep the disc in this motion? 

 
 
 
 
 
 
 
Problem 2  
 

a) Write down the Hamiltonian for a freely falling particle with mass m  and 
gravitational constant g .  (Vertical motion only) 

b) Using the Poisson bracket, show that the following dynamical variable 
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= − − is a constant of motion. Here, p is the momentum.   
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Long Problems – do two of the following three (30 points each): 
 
Problem 3  

 
A solid homogeneous cylinder with radius a  and mass m  rolls without slipping on the 
inside of a stationary larger cylindrical tube with radius R  as shown in the diagram 
below. 
 

a) Write down the Lagrangian for the problem. 
b) Write down the holonomic constraint for the “rolling without slipping” 

condition. 
c) Determine the equation of motion for the rolling cylinder in a single 

generalized coordinate. 
d) Find the frequency of small oscillations about the stable equilibrium at the 

bottom of the tube. 
e) What is the magnitude of the static friction responsible for the rolling of the 

cylinder without slipping motion? 
 
 
 

  

R

a

φ m

θ



Problem 4  
 

a) A system with a single degree of freedom is described by the following 
Hamiltonian:  

 ,H i qpω=   
where 1i = −  , ω  is a real parameter.  Using the Hamilton’s equations, solve for 
the system’s trajectory in phase space, ( )q t  and ( )p t , with initial conditions, 

( ) 00q q=  and ( ) 00 2p i qω= − . 
b) Use the following generating function 
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to derive a canonical transformation: ( ),Q Q q p=  and ( ),P P q p= for the system 

in part a).  Show that the transformed Hamiltonian ( ),K Q P describes a simple 
harmonic oscillator. 

c) You are given another Hamiltonian: 

 
2 2 4

2

ˆ ˆˆ
ˆ2 2

p qH
q
ω

= + . 

 Use the Hamilton’s equations to write down the equations of motion for Ĥ . 
d) Show that the following transformation  
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ˆ
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= − =
 

is canonical and it takes Ĥ  to the same Hamiltonian ( ),K Q P for the harmonic 
oscillator found in part b).    
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Problem 5  
 
Two masses, 2m  and m  are suspended from a fixed hinge by two 
massless springs with the same spring constant k  as shown on the 
right.  The unstretched lengths of the two springs are 1l  and 2.l   
What are the normal modes and the corresponding characteristic 
frequencies for the system?  (Consider vertical motion only.) 
 
 


