## Qualifying exam - January 2012

# **Statistical Mechanics**

You can use one textbook. Please write legibly and show all steps of your derivations.

### Problem 1 [20 points]

Consider a substance for which

$$E = AVT^n,\tag{1}$$

where E is energy, V is volume, T is temperature and A > 0 and n > 1 are constants.

- 1. What is the entropy of this substance? [5 points]
- 2. Calculate the pressure p of this substance as a function of temperature. [5 points]
- 3. Show that pV/E is a constant and determine this constant. [5 points]
- 4. Is this substance thermodynamically stable if n < 1? [5 points]

#### Problem 2 [35 points]

Consider a system of N localized non-interacting identical molecules, each having an electric dipole moment  $\mathbf{p}$ . The system is placed in an electric field  $\mathbf{E}$  at a temperature T. Assuming that the system is classical and disregarding the kinetic energy of the molecules, calculate the following properties:

- 1. Partition function of the system. [7 points]
- 2. Average potential energy  $\bar{\varepsilon}$  per molecule. [7 points]
- 3. Average dipole moment  $\bar{p}$  per molecule. [7 points]
- 4. The dielectric susceptibility  $(\partial \bar{p}/\partial E)_T$ . [7 points]
- 5. The specific heat  $(\partial \bar{\varepsilon} / \partial T)_E$ . [7 points]

## Problem 3 [20 points]

Calculate the internal energy (in J/mole) and specific heat at a constant volume (in J/mole/K) of hydrogen cyanide HCN at the temperature of 800 K. Consider HCN as an ideal gas and treat the molecular rotations and vibrations in the classical limit. The HCN molecule has a linear structure  $H-C\equiv N$  (see figure below). The gas constant is R = 8.314 J/mole/K.



## Problem 4 [25 points]

Consider a cavity containing black-body radiation at a temperature  $T_1$ . Suppose the volume of the cavity increases in an equilibrium adiabatic process from an initial value  $V_1$  to a final value  $V_2 = 5V_1$ .

- 1. What is the final temperature  $T_2$  in the cavity? [5 points]
- 2. If the initial radiation pressure was  $p_1$ , what is the final pressure  $p_2$ ? [5 points]

3. If the cavity initially contained a total of  $N_1$  photons, what is the final number  $N_2$  of photons in the cavity? Explain the physical meaning of this result. [15 points]