Qualifying exam - January 2012
 Statistical Mechanics

You can use one textbook. Please write legibly and show all steps of your derivations.

Problem 1 [20 points]
Consider a substance for which

$$
\begin{equation*}
E=A V T^{n} \tag{1}
\end{equation*}
$$

where E is energy, V is volume, T is temperature and $A>0$ and $n>1$ are constants.

1. What is the entropy of this substance? [5 points]
2. Calculate the pressure p of this substance as a function of temperature. [5 points]
3. Show that $p V / E$ is a constant and determine this constant. [5 points]
4. Is this substance thermodynamically stable if $n<1$? [5 points]

Problem 2 [35 points]

Consider a system of N localized non-interacting identical molecules, each having an electric dipole moment \mathbf{p}. The system is placed in an electric field \mathbf{E} at a temperature T. Assuming that the system is classical and disregarding the kinetic energy of the molecules, calculate the following properties:

1. Partition function of the system. [7 points]
2. Average potential energy $\bar{\varepsilon}$ per molecule. [7 points]
3. Average dipole moment \bar{p} per molecule. [7 points]
4. The dielectric susceptibility $(\partial \bar{p} / \partial E)_{T}$. [7 points]
5. The specific heat $(\partial \bar{\varepsilon} / \partial T)_{E}$. [7 points]

Problem 3 [20 points]

Calculate the internal energy (in $\mathrm{J} / \mathrm{mole}$) and specific heat at a constant volume (in $\mathrm{J} / \mathrm{mole} / \mathrm{K}$) of hydrogen cyanide HCN at the temperature of 800 K . Consider HCN as an ideal gas and treat the molecular rotations and vibrations in the classical limit. The HCN molecule has a linear structure $\mathrm{H}-\mathrm{C} \equiv \mathrm{N}$ (see figure below). The gas constant is $R=8.314 \mathrm{~J} / \mathrm{mole} / \mathrm{K}$.

Problem 4 [25 points]

Consider a cavity containing black-body radiation at a temperature T_{1}. Suppose the volume of the cavity increases in an equilibrium adiabatic process from an initial value V_{1} to a final value $V_{2}=5 V_{1}$.

1. What is the final temperature T_{2} in the cavity? [5 points]
2. If the initial radiation pressure was p_{1}, what is the final pressure p_{2} ? [5 points]
3. If the cavity initially contained a total of N_{1} photons, what is the final number N_{2} of photons in the cavity? Explain the physical meaning of this result. [15 points]
