Quantum Mechanics Qualifying Exam

Spring 2017

January 19 (9:00 am - 12:00 pm), Exploratory Hall 1004

1. Consider a particle with a wavefunction:

$$\psi(x, y, z) = N(x + y + z)e^{-(x^2 + y^2 + z^2)/\alpha^2}$$

where N is a normalization constant and α is a length-scale parameter. We measure the values of L^2 and L_z . Find the probabilities that the measurements yield:

- (a) $L^2 \to 2\hbar^2, L_z \to 0.$
- (b) $L^2 \to 2\hbar^2, L_z \to \hbar$.
- (c) $L^2 \to 2\hbar^2, L_z \to -\hbar$.

Use the formulas for normalized spherical harmonics:

$$Y_1^1(\theta,\phi) = \sqrt{\frac{3}{8\pi}} \sin \theta \, e^{i\phi} \quad , \quad Y_1^0(\theta,\phi) = -\sqrt{\frac{3}{4\pi}} \cos \theta \quad , \quad Y_1^{-1}(\theta,\phi) = -\sqrt{\frac{3}{8\pi}} \sin \theta \, e^{-i\phi} = -\sqrt{\frac{$$

2. Suppose we have a system with total angular momentum l = 1. The ensemble of states is described by the density matrix:

$$\rho = \frac{1}{4} \left(\begin{array}{rrr} 2 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{array} \right)$$

in the representation that diagonalizes L_z .

- (a) Is ρ a permissible density matrix. Does it describe a pure or mixed ensemble?
- (b) What are the average values of the measured L_x , L_y , L_z in this ensemble?
- (c) What is the standard deviation (uncertainty) ΔL_z of the measured L_z ?
- 3. A free particle of mass m, moving through a one-dimensional world, is initially in the state given by the wavefunction:

$$\psi(x,0) = A \exp\left(-\frac{x^2}{a^2}\right)$$

- (a) Find the probability amplitude in momentum space $\psi(p, 0)$ at t = 0.
- (b) Find $\psi(x,t)$ at all times t.

Don't bother calculating the normalization constant A, but use the assumption that $\psi(x,t)$ is normalized to eliminate A from the final result. You may use the formula:

$$\int_{-\infty}^{\infty} dx \, e^{-\lambda x^2} = \sqrt{\frac{\pi}{\lambda}}$$

4. The Hamiltonian for a harmonic oscillator can be written in dimensionless units $(m = \hbar = \omega = 1)$ as:

$$H = a^{\dagger}a + \frac{1}{2}$$

where:

$$a = \frac{x+ip}{\sqrt{2}}$$
 , $a^{\dagger} = \frac{x-ip}{\sqrt{2}}$

One unnormalized energy eigenfunction is:

$$\psi = (2x^3 - 3x)e^{-x^2/2}$$

Derive two other (unnormalized) eigenfunctions which are closest in energy to ψ . Stating solutions without proof will earn no credit.