Quantum Mechanics Qualifying Exam

Fall 2017

August 24 (9:00 am - 12:00 pm), Exploratory Hall 1004

1. (a) A particle of mass m is subjected to a force $\mathbf{F}(\mathbf{r})$ in three dimensions such that the wavefunction $\psi(\mathbf{p})=\langle\mathbf{p} \mid \psi\rangle$ in momentum representation satisfies the momentum-space Schrodinger equation:

$$
\left(\frac{p^{2}}{2 m}-a \nabla_{\mathbf{p}}^{2}\right) \psi(\mathbf{p})=i \hbar \frac{\partial \psi(\mathbf{p})}{\partial t}
$$

where the momentum-space gradient at momentum $\mathbf{p}=\left(p_{x}, p_{y}, p_{z}\right)$ is:

$$
\boldsymbol{\nabla}_{\mathbf{p}}=\hat{\mathbf{x}} \frac{\partial}{\partial p_{x}}+\hat{\mathbf{y}} \frac{\partial}{\partial p_{y}}+\hat{\mathbf{z}} \frac{\partial}{\partial p_{z}}
$$

Find the force $F(\mathbf{r})$ in real space.
2. A particle of mass m free to move in only one dimension is perfectly confined to a region $0<x<a$ where no force acts on it. At $t=0$ its normalized wavefunction is:

$$
\psi(x, 0)=\sqrt{\frac{8}{5 a}}\left[1+\cos \left(\frac{\pi x}{a}\right)\right] \sin \left(\frac{\pi x}{a}\right)
$$

What is the wavefunction $\psi(x, t)$ at any later time $t>0$? What is the average energy of the particle at an arbitrary time $t>0$?
3. For electronic states in a finite one-dimensional system of size N, a simple model Hamiltonian is:

$$
H=\sum_{n=1}^{N}\left[E_{0}|n\rangle\langle n|+W(|n\rangle\langle n+1|+\text { h.c. })\right]
$$

where the states $|n\rangle$ make an orthonormal basis (i.e. $\left\langle n \mid n^{\prime}\right\rangle=\delta_{n n^{\prime}}$) and E_{0}, W are parameters. Assume periodic boundary conditions $|n+N\rangle \equiv|n\rangle$. Calculate the energy levels and wavefunctions of all stationary states.
4. A particle of mass m is constrained to move between two concentric impermeable spheres of radii $r=a$ and $r=b$. There is no other potential. Find the ground-state energy and normalized wavefunction.
5. Two electrons are tightly bound to different neighboring sites in a certain solid. They are, therefore, distinguishable particles which can be described in terms of their respective Pauli spin matrices $\boldsymbol{\sigma}^{(1)}$ and $\boldsymbol{\sigma}^{(2)}$. The Hamiltonian of these two electrons is:

$$
H=-J\left[\sigma_{x}^{(1)} \sigma_{x}^{(2)}+\sigma_{y}^{(1)} \sigma_{y}^{(2)}\right]
$$

where J is a constant.
(a) Find the spectrum and degeneracy of all energy levels.
(b) Introduce a magnetic field of magnitude B in the z direction. How are the energy levels modified? Draw an energy level diagram as a function of B.

