Classical Electrodynamics Qualifying Exam: January 19, 2011

1. [30] A line charge with uniform charge density lies along the z-axis between $z=0$ and $z=b$ and has total charge Q.
a) [10] Find an exact expression for the electrostatic potential $\Phi(r, z)$ in cylindrical coordinates.
b) [5] Show that your result in part (a) has the correct asymptotic form as $\sqrt{r^{2}+z^{2}} / b \rightarrow \infty$.
c) [10] Find the potential $\Phi(r, \theta)$ in spherical coordinates (r, θ, ϕ) as a series involving Legendre polynomials and powers of r, for $r>b$.
d) [5] Show that your results in parts (a) and (c) are equivalent for observation points on the z-axis with $z>b$. Recall the Taylor series

$$
\begin{equation*}
\ln (1-x)=-\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} . \tag{1}
\end{equation*}
$$

2. [25] In this problem, you will find the electrostatic potential $\Phi(r, z)$ inside a circular cylinder with radius a and height L, adopting cylindrical coordinates (r, ϕ, z). The bottom of the cylinder is at $z=0$ and the cylinder's axis is the z-axis. The potential is zero on the surface at $z=0$ and on the curved surface and is a constant V_{0} on the surface at $z=L$.
a) [15] Show that the potential inside the cylinder can be expressed in the form

$$
\begin{equation*}
\Phi(r, z)=\sum_{n=1}^{\infty} A_{n} \sinh \left(\frac{x_{0 n} z}{a}\right) J_{0}\left(\frac{x_{0 n} r}{a}\right) \tag{2}
\end{equation*}
$$

where $x_{0 n}$ is the $n^{\text {th }}$ zero of the Bessel function $J_{0}(x)$.
b) [10] Find the coefficients A_{n}. Recall that

$$
\begin{equation*}
\frac{d}{d u}\left[u^{\nu} J_{\nu}(u)\right]=u^{\nu} J_{\nu-1}(u) \tag{3}
\end{equation*}
$$

3. [15] A sphere has radius a, is centered on the origin, and is made up of a uniform, linear dielectric material with dielectric constant ϵ / ϵ_{0}. A point charge q is located at the origin. Find the surface and volume bound charge densities.
4. [30] An infinite, conducting plane at $z=0$ carries a uniform current per unit transverse length, $K \hat{y}$.
a) [10] Find the magnetic induction \vec{B} everywhere outside of the plane.
b) [10] A second infinite, conducting plane at $z=-d$ carries a uniform current per unit transverse length, $-K \hat{y}$. Use the Lorentz force law to find the pressure that the first plane exerts on the second. Is it attractive or repulsive?
c) [10] Repeat part (b), this time using the Maxwell stress tensor.
