Classical Electrodynamics Qualifying Exam: August, 2012

1. [10] A thin charged disk of radius R has uniform area charge density σ. Find the electrostatic potential $\Phi(z)$ along \hat{z}, its symmetry axis. Check that your result makes sense when $z \gg R$.
2. [10] A neutral, conducting sphere of radius a is placed in a uniform external electric field $E_{0} \hat{z}$. Charge is induced on the sphere, modifying the external field. Find the electrostatic potential $\Phi(r, \theta)$ outside the sphere. Adopt spherical coordinates with \hat{z} the polar axis.
3. [10] Show that, for a spherically symmetric charge distribution, all multipole moments beyond the monopole vanish. (Hint: Recall that the spherical harmonics are orthogonal.)
4. [20] A paraboloidal surface $z=r_{\perp}^{2} / r_{0}$, extending from $r_{\perp}=0$ to $r_{\perp}=r_{0}$ (r_{\perp} and z are cylindrical coordinates), spins with angular velocity $\omega \hat{z}$ and carries a surface-charge density

$$
\sigma\left(r_{\perp}\right)=\frac{Q}{r_{0}^{2}}\left(1+\frac{4 r_{\perp}^{2}}{r_{0}^{2}}\right)^{-1 / 2}
$$

where ω, Q and r_{0} are constants.
a) [10] Find the magnetic dipole moment \vec{m}.
b) [10] Find the magnetic induction $\vec{B}(r, \theta, \phi)$ in spherical coordinates, in the limit $r \gg r_{0}$.
5. [10] Starting with Maxwell's equations in vacuum (i.e., $\epsilon=\epsilon_{0}$ and $\mu=\mu_{0}$, but free charges and currents are allowed), derive the wave equations satisfied by the scalar and vector potentials in the Lorenz gauge.

