Classical Electrodynamics Qualifying Exam: August, 2011

1. [15] Charge q is uniformly distributed around a circular ring of radius a. The ring's axis is the z-axis and its center is located at $z=b$. Find the potential $\Phi(r, \theta)$ in spherical coordinates as a series involving Legendre polynomials in $\cos \theta$ and powers of r.
2. [15] The region above the $x-y$ plane (where $z>0$) contains a linear isotropic dielectric with dielectric constant $\epsilon_{1} / \epsilon_{0}$. The region below the $x-y$ plane (where $z<0$) contains a linear isotropic dielectric with dielectric constant $\epsilon_{2} / \epsilon_{0}$. A point charge q is located on the z-axis at $z=d$.
a) [10] Find the electrostatic potential $\Phi(r, \phi, z)$ in cylindrical coordinates everywhere in space.
b) [5] Find the bound charge surface density $\sigma_{b}(r, \phi)$ on the $x-y$ plane.
3. [15] Consider a thick, hemispherical shell of ferromagnetic material. With the z-axis as the polar axis for a spherical coordinate system, the shell occupies $a \leq r \leq b, 0 \leq \theta \leq \pi / 2$, and $0 \leq \phi \leq 2 \pi$. The shell has a magnetization $A z \hat{z}$, with A a constant. Find the magnetic field \vec{H} at the origin.
4. [15] A point charge q moves with constant velocity $\beta c \hat{z}$ and is at the origin at time $t=0$. Find the electric field at the origin $\vec{E}(t)$ for time $t>0$.
