George Mason University

Physics PhD Qualifying Exam

Instructions: Answer all the questions. Writing must be legible to get credit.

1. The Hamiltonian operator describing a certain quantum mechanical system has a matrix representation:

$$
H=E_{0}\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)
$$

H has eigenvalues $2 E_{0}$ and 0 .
Another operator, A, has the representation

$$
A=a\left(\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right)
$$

A has eigenvalues $(1+\sqrt{2}) a$ and $(1-\sqrt{2}) a$.
(a) Find the eigenvectors of H and A in this representation.
(b) Suppose that a measurement of the energy of the system is made, and the result is $2 E_{0}$. The quantity A is then measured. Calculate the probabilities of the results $(1+\sqrt{2}) a$ and $(1-\sqrt{2}) a$.
2. A particle of mass m is in a 1-dimensional infinite square well, of total width a, as

shown in the figure. At time $t=0$ its normalized wave function is:

$$
\psi(x, t=0)=\sqrt{8 / 5 a}[1+\cos (\pi x / a)] \sin (\pi x / a)
$$

(a) Which energy levels are occupied for this wave function?
(b) What is the wave function at some later time, t ?
(c) What is the average energy at $t=0$, and later at t ?
3.

A particle represented by a plane wave is incident, from the left, on a 1 -dimensional potential barrier:

$$
V=V_{0} \delta(x)
$$

Calculate the probability that the particle is reflected from the barrier. Use the continuity of the wave function at $x=0$ and following relation for the discontinuity in the derivative of the wave function, at a δ-function:

$$
\Delta\left(\frac{d \psi}{d x}\right)=\frac{2 m V_{0}}{\hbar^{2}} \psi(0)
$$

4. A spinless particle is represented by a wave function

$$
\psi(x, y, z)=K x e^{-\alpha r}
$$

where K and α are real constants and $r=\sqrt{x^{2}+y^{2}+z^{2}}$ By writing x in terms of spherical harmonics,
(a) What is the total angular momentum of the particle?
(b) What is the expectation value of L_{z} ?
(c) What is the probability that the particle's θ is less than 45° ?

Some spherical harmonics:

$$
\begin{array}{cl}
Y_{0}^{0}=\sqrt{\frac{1}{4 \pi}} & Y_{1}^{ \pm 1}=\mp \sqrt{\frac{3}{8 \pi}} \sin \theta e^{ \pm i \phi} \\
Y_{1}^{0}=\sqrt{\frac{3}{4 \pi}} \cos \theta & Y_{2}^{ \pm 1}=\mp \sqrt{\frac{15}{8 \pi}} \sin \theta \cos \theta e^{ \pm i \phi}
\end{array}
$$

