Classical Electrodynamics Qualifying Exam: August 24, 2010

1. [30] A neutral conducting sphere with radius a is centered on the origin. A line charge with uniform charge per unit length λ lies on the z-axis between $z=b$ and $z=c(a<b<c)$. Find the electrostatic potential $\Phi(r, \theta, \phi)$ for $r>c$ as a series involving $P_{l}(\cos \theta)$ and powers of r.
2. [20] A dielectric cylinder has length L and radius a. The z-axis is the symmetry axis and the two end faces are at $z=0$ and $z=L$. The cylinder has a uniform polarization $P \hat{z}$. Find the electric field on the z-axis within the cylinder.
3. [20] A cylinder has length L and radius a and carries a surface-charge density σ on its curved face. (There is no charge on the end faces.) The z-axis is the symmetry axis and the two end faces are at $z=0$ and $z=L$. The cylinder spins about its axis with angular speed ω. Find the magnetic induction $\vec{B}(z)$ on the z-axis for $z \gg L$.
4. [20] a) Show that a plane electromagnetic wave

$$
\vec{E}=\vec{E}_{0} e^{i(\vec{k} \cdot \vec{x}-\omega t)} \quad ; \quad \vec{B}=\vec{B}_{0} e^{i(\vec{k} \cdot \vec{x}-\omega t)}
$$

with \vec{E}_{0} and \vec{B}_{0} constants, satisfies Maxwell's equations in vacuum if $\hat{k} \times \vec{E}=c \vec{B} ; c$ is the speed of light.
b) Show that $c^{2} \epsilon_{0} \mu_{0}=1$.

