Classical Electrodynamics Qualifying Exam: August 25, 2009

1. [15] Consider the electrostatic potential Φ on the $x-y$ plane in the region $y>0$, with $\Phi(x, y=0)=V \cos (2 \pi x / L)$ and $\Phi \rightarrow 0$ as $y \rightarrow \infty$. Find $\Phi(x, y)$ when $y>0$.
2. [15] A point electric dipole with moment $p \hat{z}$ is located at the origin. A grounded, conducting, spherical shell has radius a and is centered on the origin. Find the electrostatic potential Φ for $r<a$.
3. [10] A sphere with radius a and made of a linear dielectric material with dielectric constant ϵ / ϵ_{0} is placed in a region where there is initially a uniform electric field $E_{0} \hat{z}$. As a result, the potential inside the sphere becomes (in spherical coordinates)

$$
\Phi(r, \theta)=-\frac{3 \epsilon_{0}}{\epsilon+2 \epsilon_{0}} E_{0} r \cos \theta
$$

Find the bound charge volume density inside the sphere and the bound charge surface density on its surface.
4. [20] A circular loop with radius a is centered on the origin, lies in the $x-y$ plane, and carries a current I.
a) [5] What is the magnetic dipole moment \vec{m} of the loop?
b) [15] Find the magnetic vector potential $\vec{A}(\vec{x})$ in the limit that $|\vec{x}| \gg a$.
5. [20] Consider a long, straight wire with circular cross section. Each end is held at constant potential, with potential difference V. Although current may flow down the wire, the charge density vanishes throughout.
a) [10] Show that the electric field inside the wire is uniform.
b) [10] Use the Poynting vector to show that heat is dissipated in the wire at rate $V I$ when current I flows.

