Qualifying Exam for PHYS 685: Dec 12, 2008

1. [25] A thin spherical shell with radius a is centered on the origin. The "Northern Hemisphere" (i.e., $0 \leq \theta<\pi / 2$) carries electric charge area density σ_{0} and the "Southern Hemisphere" (i.e., $\pi / 2<\theta \leq \pi)$ carries electric charge area density $-\sigma_{0}$.
a) [15] Find the electrostatic potential $\Phi(r, \theta)$ for $r>a$ as a series involving powers of r and Legendre polynomials. Note: Your answer should include a factor $\int_{0}^{1} d u P_{l}(u)$. You need not evaluate this integral.
b) [5] Find the electric dipole moment \vec{p} of the shell.
c) [5] Show that your results in parts (a) and (b) are consistent.
2. [25] A thin disk of radius a lies in the $x-y$ plane with its center at the origin. It carries an electric charge area density

$$
\sigma_{0}\left(1-\frac{5}{4} \frac{r}{a}\right)
$$

and is spinning about \hat{z} with angular speed ω.
a) $[10]$ Find its magnetic dipole moment \vec{m}.
b) $[15]$ Find the magnetic induction $\vec{B}(z)$ along the z-axis for $z \gg a$.
3. [10] Two square metal plates of side length L are separated by a distance $d(d \ll L)$. A dielectric slab of size $L \times L \times d$ just slides between the plates. It is inserted a distance x (with one side of the dielectric slab parallel to one side of the metal plates) and held there. The metal plates are then charged to a potential difference V and disconnected from the battery. Find the electric force on the slab.
4. [10] A rectangular loop of wire with non-zero resitance is turned through 180° in a region with static, uniform magnetic induction. Show that the total charge transported through the loop as it is flipped is independent of the speed of flipping.

