Qualifying Exam for PHYS 685: Dec 12, 2008

1. [25] A thin spherical shell with radius a is centered on the origin. The "Northern Hemisphere" (i.e., $0 \le \theta < \pi/2$) carries electric charge area density σ_0 and the "Southern Hemisphere" (i.e., $\pi/2 < \theta \le \pi$) carries electric charge area density $-\sigma_0$.

a) [15] Find the electrostatic potential $\Phi(r,\theta)$ for r > a as a series involving powers of r and Legendre polynomials. Note: Your answer should include a factor $\int_0^1 du P_l(u)$. You need not evaluate this integral.

b) [5] Find the electric dipole moment \vec{p} of the shell.

c) [5] Show that your results in parts (a) and (b) are consistent.

2. [25] A thin disk of radius a lies in the x - y plane with its center at the origin. It carries an electric charge area density

$$\sigma_0\left(1-\frac{5}{4}\frac{r}{a}\right)$$

and is spinning about \hat{z} with angular speed ω .

a) [10] Find its magnetic dipole moment \vec{m} .

b) [15] Find the magnetic induction $\vec{B}(z)$ along the z-axis for $z \gg a$.

3. [10] Two square metal plates of side length L are separated by a distance d ($d \ll L$). A dielectric slab of size $L \times L \times d$ just slides between the plates. It is inserted a distance x (with one side of the dielectric slab parallel to one side of the metal plates) and held there. The metal plates are then charged to a potential difference V and disconnected from the battery. Find the electric force on the slab.

4. [10] A rectangular loop of wire with non-zero resitance is turned through 180° in a region with static, uniform magnetic induction. Show that the total charge transported through the loop as it is flipped is independent of the speed of flipping.