Classical Mechanics Qualifier (Fall 2010) George Mason University

You will have THREE hours to complete the exam. Choose three out of the following four problems. You are allowed to use your graduate textbook during the exam.

Problem 1 (20pts)
A particle of mass m is constrained to move under the influence of gravity on the inside of a smooth parabolic surface of revolution given by $r^{2}=a z$. Use the Lagrange undetermined multiplier method to derive the constraint force for this problem. Write your answer as a vector in cylindrical coordinates. (Hint: You might want to use the two constants of motion E and l to simplify some of your expressions. The magnitude of the constraint force is proportional to $\left(1+\frac{4 r^{2}}{a^{2}}\right)^{-3 / 2}$.)

Problem 2 (20pts)
A distant star is surrounded by a dust cloud. A planet at a distance r away moves under the influence of the star with the familiar inverse-square potential $V_{0}(r)=-k / r$ and the dust cloud contributes a small additional factor $V^{\prime}(r)=a r^{2} / 2$. The planet is observed to revolve around the star in a nearly circular orbit with an average radius r_{0}.
a) For the given central force potential

$$
V(r)=V_{0}(r)+V^{\prime}(r)=-\frac{k}{r}+\frac{1}{2} a r^{2}
$$

show that the radius for the circular orbit r_{0} is given by the following expression:

$$
r_{0}\left(k+a r_{0}^{3}\right)=\frac{l^{2}}{m}
$$

where m is the reduced mass of the system and l is the angular momentum of the system.
b) Consider the observed orbit as a small deviation from this circular orbit, show that the apsides will advance approximately by $\frac{3 a \pi}{m \omega_{0}{ }^{2}}$ per revolution, where ω_{0} is the angular frequency for the circular orbit.

Problem 3 (20pts)
Let I_{1}, I_{2}, I_{3} be the three principal moments of inertia relative to the center of mass of a rigid body and suppose that all these moments are different and they are ranked according to $I_{1}>I_{2}>I_{3}$. The rigid body is set to spin around one of its principle axes in free space (with no external force) with an angular velocity $\boldsymbol{\omega}$. Show that the motion is stable if the object is spinning about the principal axes corresponding to I_{1} and I_{3} (the largest and the smallest moments of inertia) and unstable about the principal axis corresponding to I_{2}.
Explain this analytically using the Euler's equations.
Problem 4 (20pts)
A particle of mass m described by one generalized coordinate q moves under the influence of a potential $V(q)$ and a damping force $-2 m \gamma \dot{q}$ proportional to its velocity.
a) Show that the following Lagrangian gives the desired equation of motion.

$$
L=e^{2 \gamma t}\left(\frac{1}{2} m \dot{q}^{2}-V(q)\right)
$$

b) Obtain the Hamiltonian $H(q, p, t)$ for this system.
c) Consider the following generating function:

$$
F(p, q, Q, P, t)=e^{\gamma t} q P-Q P
$$

obtain the canonical transformation from (q, p) to (Q, P) and the transformed Hamiltonian $K(Q, P, t)$.
d) Pick $V(q)=\frac{1}{2} m \omega^{2} q^{2}$ as a harmonic potential with a natural frequency ω. Show that the transformed Hamiltonian yields a constant of motion

$$
K=\frac{P^{2}}{2 m}+\frac{1}{2} m \omega^{2} Q^{2}+\gamma Q P
$$

e) Obtain the solution $Q(t)$ for the damped oscillator in the under-damped case $\gamma<\omega$ by solving Hamilton’s equations in the transformed coordinates. Then, write down the solution $q(t)$ using the canonical transformation obtained in part c.

