Qualifying exam - January 2014

Statistical Mechanics

You can use one textbook. Please write legibly and show all steps of your derivations. Note the Formula Sheet attached.

Problem 1 [26 points]

Consider a gas of identical classical particles, each of mass m, in thermal equilibrium at a temperature T. If $\mathbf{v}=\left(v_{x}, v_{y}, v_{z}\right)$ is the particle velocity and v is its speed, calculate the following average values:
(a) [2 points] $\overline{v_{x}}$
(b) $[4$ points $] \overline{v_{x}^{2}}$
(c) $[2$ points $] \overline{v_{x}^{3}}$
(d) $[4$ points $] \overline{v^{2} v_{x}}$
(e) $[4$ points $] \overline{v_{x}^{2} v_{y}^{2}}$
(f) [4 points] \bar{v}
(g) $[4$ points $] \overline{(1 / v)}$
(h) [2 points] Using the results of (f) and (g), show that the general inequality $\bar{v} \overline{(1 / v)}>$ 1 appearing in Problem 5 is satisfied.

Problem 2 [24 points]
Consider a free electron gas at $T=0 \mathrm{~K}$. Suppose its volume is V and the number of electrons is N.

1. [4 points] Show that the total kinetic energy of the gas is

$$
\begin{equation*}
U_{0}=\frac{3}{5} N \varepsilon_{F}, \tag{1}
\end{equation*}
$$

where ε_{F} is the Fermi energy.
2. [5 points] Derive the following relation between the gas pressure p and total energy U_{0} :

$$
\begin{equation*}
p V=\frac{2}{3} U_{0} . \tag{2}
\end{equation*}
$$

3. [5 points] Show that the isothermal compressibility of the gas, $\beta_{T}=-(\partial \ln V / \partial p)_{T, N}$, equals

$$
\begin{equation*}
\beta_{T}=\frac{3 V}{2 N \varepsilon_{F}} \tag{3}
\end{equation*}
$$

4. [5 points] The speed of sound in a gas is given by

$$
\begin{equation*}
v_{s}=\left[(\partial p / \partial \rho)_{T}\right]^{1 / 2}, \tag{4}
\end{equation*}
$$

where ρ is the gas density (mass per unit volume). Compute v_{s} for the free electron gas at $T=0 \mathrm{~K}$ and compare it with the Fermi velocity v_{F}.
5. [5 points] If v is the electron speed, calculate $\bar{v},(1 / v)$, and check if the general inequality $\bar{v} \overline{(1 / v)}>1$ appearing in Problem 5 is satisfied.

Problem 3 [24 points]

Imagine a harmonic solid with an isotropic dispersion relation $\omega=A k^{b}$, where ω is the angular frequency of atomic vibrations, k is the wave number, and $A>0$ and $b>0$ are constants. Assuming that this dispersion relation holds for each of three polarizations of phonons, show that in the low-temperature limit the phonon contribution to the heat capacity of the solid is proportional to $T^{3 / b}$.

Problem 4 [26 points]

A system has two quantum states, state 0 with energy 0 and state 1 with energy ε. These states can be occupied by non-interacting fermions from a particle and heat reservoir at a temperature T and chemical potential μ.

1. [6 points] Calculate the grand partition function $\Gamma(T, \mu)$ of the system.
2. Using the obtained $\Gamma(T, \mu)$, compute the following properties as functions of T and μ :
(a) [6 points] Average occupation numbers of the two states, \bar{n}_{0} and \bar{n}_{1}.
(b) $[6$ points $]$ Average total energy \bar{E}.
(c) [8 points] The system entropy S.

Extra Credit Problem

Problem 5 [10 points]
Prove that for any probability distribution of classical or quantum particles

$$
\begin{equation*}
\bar{v} \overline{(1 / v)}>1 \tag{5}
\end{equation*}
$$

where v is the particle speed.

Formula Sheet

Moments of the Gaussian function:

$$
\begin{equation*}
M_{n}=\int_{0}^{\infty} x^{n} e^{-x^{2}} d x \tag{6}
\end{equation*}
$$

Selected values: $M_{0}=\sqrt{\pi} / 2, M_{1}=1 / 2, M_{2}=\sqrt{\pi} / 4, M_{3}=1 / 2, M_{4}=3 \sqrt{\pi} / 8, M_{5}=1$, $M_{6}=15 \sqrt{\pi} / 16$.

