Qualifying exam - January 2014

Statistical Mechanics

You can use one textbook. Please write legibly and show all steps of your derivations. Note the Formula Sheet attached.

Problem 1 [26 points]

Consider a gas of identical classical particles, each of mass m, in thermal equilibrium at a temperature T. If $\mathbf{v} = (v_x, v_y, v_z)$ is the particle velocity and v is its speed, calculate the following average values:

- (a) [2 points] $\overline{v_x}$
- (b) [4 points] $\overline{v_x^2}$
- (c) [2 points] $\overline{v_x^3}$
- (d) [4 points] $\overline{v^2 v_x}$
- (e) [4 points] $\overline{v_x^2 v_y^2}$
- (f) [4 points] \overline{v}
- (g) [4 points] $\overline{(1/v)}$

(h) [2 points] Using the results of (f) and (g), show that the general inequality $\overline{v(1/v)} > 1$ appearing in Problem 5 is satisfied.

Problem 2 [24 points]

Consider a free electron gas at T = 0 K. Suppose its volume is V and the number of electrons is N.

1. [4 points] Show that the total kinetic energy of the gas is

$$U_0 = \frac{3}{5} N \varepsilon_F,\tag{1}$$

where ε_F is the Fermi energy.

2. [5 points] Derive the following relation between the gas pressure p and total energy U_0 :

$$pV = \frac{2}{3}U_0.$$
 (2)

3. [5 points] Show that the isothermal compressibility of the gas, $\beta_T = -(\partial \ln V/\partial p)_{T,N}$, equals

$$\beta_T = \frac{3V}{2N\varepsilon_F}.$$
(3)

4. [5 points] The speed of sound in a gas is given by

$$v_s = \left[\left(\frac{\partial p}{\partial \rho} \right)_T \right]^{1/2},\tag{4}$$

where ρ is the gas density (mass per unit volume). Compute v_s for the free electron gas at T = 0 K and compare it with the Fermi velocity v_F .

5. [5 points] If v is the electron speed, calculate \overline{v} , (1/v), and check if the general inequality $\overline{v(1/v)} > 1$ appearing in Problem 5 is satisfied.

Problem 3 [24 points]

Imagine a harmonic solid with an isotropic dispersion relation $\omega = Ak^b$, where ω is the angular frequency of atomic vibrations, k is the wave number, and A > 0 and b > 0are constants. Assuming that this dispersion relation holds for each of three polarizations of phonons, show that in the low-temperature limit the phonon contribution to the heat capacity of the solid is proportional to $T^{3/b}$.

Problem 4 [26 points]

A system has two quantum states, state 0 with energy 0 and state 1 with energy ε . These states can be occupied by non-interacting fermions from a particle and heat reservoir at a temperature T and chemical potential μ .

- 1. [6 points] Calculate the grand partition function $\Gamma(T,\mu)$ of the system.
- 2. Using the obtained $\Gamma(T, \mu)$, compute the following properties as functions of T and μ :
 - (a) [6 points] Average occupation numbers of the two states, \bar{n}_0 and \bar{n}_1 .
 - (b) [6 points] Average total energy \overline{E} .
 - (c) [8 points] The system entropy S.

Extra Credit Problem

Problem 5 [10 points]

Prove that for *any* probability distribution of classical or quantum particles

$$\bar{v}(1/v) > 1, \tag{5}$$

where v is the particle speed.

Formula Sheet

Moments of the Gaussian function:

$$M_n = \int_0^\infty x^n e^{-x^2} dx.$$
(6)

Selected values: $M_0 = \sqrt{\pi}/2$, $M_1 = 1/2$, $M_2 = \sqrt{\pi}/4$, $M_3 = 1/2$, $M_4 = 3\sqrt{\pi}/8$, $M_5 = 1$, $M_6 = 15\sqrt{\pi}/16$.