Qualifying exam - August 2017

Statistical Mechanics

You can use one textbook. Please write legibly and show all steps of your derivations. A formula sheet is attached.

Problem 1 [15 points]

The ammonia (NH₃) molecule has the structure of a triangular pyramid, with the N atom in one corner and three hydrogen atoms in other corners, as in the Figure below. Calculate the internal energy (in J/mol) and specific heat at a constant volume (in J/mol/K) of ammonia at the temperature of 1000 K. Consider ammonia as an ideal gas and treat the molecular rotations and vibrations in the classical limit. The gas constant is R = 8.314J/mol/K.

Problem 2 [25 points]

Consider a substance composed of identical particles of a mass m. Using classical statistics, calculate

1. [10 points]

$$\overline{\left(v-\overline{v}\right)^2},\tag{1}$$

where v is the magnitude of velocity of the center of mass of the particle.

2. [15 points]

$$\overline{\left(K-\overline{K}\right)^2},\tag{2}$$

where K is the kinetic energy of the center of mass of the particle.

Problem 3 [30 points]

Consider a cavity containing black-body radiation at a temperature T_1 . The Planck formula

$$u_{\omega}(\omega,T) = \frac{V\hbar}{\pi^2 c^3} \frac{\omega^3}{e^{\hbar\omega/kT} - 1}.$$
(3)

gives the energy distribution function $u_{\omega}(\omega, T)$, where ω is the angular frequency of the electromagnetic waves. The plot of $u_{\omega}(\omega, T_1)$ as a function of ω has a maximum at a frequency ω_1 .

Suppose the volume of the cavity increases in an equilibrium adiabatic process from an initial value V_1 to a final value $V_2 = 27V_1$.

1. What is the final temperature T_2 in the cavity? [5 points]

2. If the initial radiation pressure was p_1 , what is the final pressure p_2 ? [5 points]

3. What is the final frequency ω_2 of the maximum of $u_{\omega}(\omega, T_2)$? [10 points]

4. If the cavity initially contained a total of N_1 photons, what is the final number of photons in the cavity? [10 points]

Problem 4 [30 points]

Consider a quantum gas of ultra-relativistic particles (bosons of fermions) with the energymomentum relation $\varepsilon = cp$, where c is speed of light. Show that at any temperature

$$PV = \frac{E}{3},\tag{4}$$

where P is pressure, V is volume of the gas and E is its total energy.

Does this result remain valid for an ultra-relativistic gas in the Maxwell-Boltzmann statistics?

Formula Sheet

Moments of the Gaussian function:

$$M_n = \int_0^\infty x^n e^{-x^2} dx.$$
(5)

Selected values: $M_0 = \sqrt{\pi}/2$, $M_1 = 1/2$, $M_2 = \sqrt{\pi}/4$, $M_3 = 1/2$, $M_4 = 3\sqrt{\pi}/8$, $M_5 = 1$, $M_6 = 15\sqrt{\pi}/16$.