Qualifying exam - August 2016

Statistical Mechanics

You can use one textbook. Please write legibly and show all steps of your derivations. Note the Formula Sheet attached.

Problem 1 [20 points]
Consider a system of non-interacting identical localized oscillators. Using the classical Hamiltonian

$$
\begin{equation*}
H=\frac{p^{2}}{2 m}+\frac{m \omega^{2}}{2} x^{2} \tag{1}
\end{equation*}
$$

(m is the particle mass and x displacement from equilibrium) calculate

1. [10 points]

$$
\begin{equation*}
\overline{\left(x^{2}-\overline{x^{2}}\right)^{2}} \tag{2}
\end{equation*}
$$

2. [10 points]

$$
\begin{equation*}
\overline{\left(p^{2}-\overline{p^{2}}\right)^{2}} \tag{3}
\end{equation*}
$$

Problem 2 [25 points]

An adiabatic rigid cylinder is divided in two compartments by a piston. One compartment is filled with $N_{1}=13$ moles of water vapor at a temperature T_{1} and pressure p_{1}. The other compartment is filled with $N_{2}=12$ moles of carbon dioxide CO_{2} at a temperature $T_{2}=3 T_{1}$ and pressure $p_{2}=2 p_{1}$. Each gas is initially in thermodynamic equilibrium. The piston is removed and the gases mix. After equilibrium has been reached,

1. [5 points] What is the internal energy of the gas mixture in the cylinder?
2. [10 points] What is the temperature of the gas mixture?
3. [10 points] What is the pressure of the gas mixture?

Consider both gases as ideal and treat the molecular rotations and atomic vibrations using classical mechanics.

Problem 3 [20 points]
Consider a cavity containing black-body radiation at a temperature T_{1}. Suppose the volume of the cavity increases in an equilibrium adiabatic process from an initial value V_{1} to a final value $V_{2}=5 V_{1}$.

1. [5 points] What is the final temperature T_{2} in the cavity?
2. [5 points] If the initial radiation pressure was p_{1}, what is the final pressure p_{2} ?
3. [10 points] If the cavity initially contained a total of N_{1} photons, what is the final number N_{2} of photons in the cavity? Explain the physical meaning of this result.

Problem 4 [25 points]
Consider a free electron gas at $T=0 \mathrm{~K}$. Suppose its volume is V and the number of electrons is N.

1. [5 points] Show that the total kinetic energy of the gas is

$$
\begin{equation*}
U_{0}=\frac{3}{5} N \varepsilon_{F}, \tag{4}
\end{equation*}
$$

where ε_{F} is the Fermi energy.
2. [5 points] Derive the following relation between the gas pressure p and total energy U_{0} :

$$
\begin{equation*}
p V=\frac{2}{3} U_{0} \tag{5}
\end{equation*}
$$

3. [5 points] Show that the isothermal compressibility of the gas, $\beta_{T}=-(\partial \ln V / \partial p)_{T, N}$, equals

$$
\begin{equation*}
\beta_{T}=\frac{3 V}{2 N \varepsilon_{F}} \tag{6}
\end{equation*}
$$

4. [5 points] The speed of sound in a gas is given by

$$
\begin{equation*}
v_{s}=\left[(\partial p / \partial \rho)_{T}\right]^{1 / 2} \tag{7}
\end{equation*}
$$

where ρ is the gas density (mass per unit volume). Compute v_{s} for the free electron gas at $T=0 \mathrm{~K}$ and compare it with the Fermi velocity v_{F}.
5. [5 points] If v is the electron speed, calculate $\bar{v}, \overline{(1 / v)}$, and show that $\bar{v} \overline{(1 / v)}>1$.

Formula Sheet

Moments of the Gaussian function:

$$
\begin{equation*}
M_{n}=\int_{0}^{\infty} x^{n} e^{-x^{2}} d x \tag{8}
\end{equation*}
$$

Selected values: $M_{0}=\sqrt{\pi} / 2, M_{1}=1 / 2, M_{2}=\sqrt{\pi} / 4, M_{3}=1 / 2, M_{4}=3 \sqrt{\pi} / 8, M_{5}=1$, $M_{6}=15 \sqrt{\pi} / 16$.

