Qualifying exam - August 2014

Statistical Mechanics

You can use one textbook. Please write legibly and show all steps of your derivations. Note the Formula Sheet attached.

Problem 1 [20 points]

Consider a substance composed of identical particles of mass m. Using classical statistics, calculate the most probable value, K_{m}, of the kinetic energy K of the center of mass of a particle. Compare it with the canonical average kinetic energy \bar{K} of a particle. If the two values are different, explain why.

Problem 2 [30 points]
Consider a system of localized identical quantum harmonic oscillators with an angular frequency ω. The energy of an oscillator is quantized by $\varepsilon_{n}=\hbar \omega / 2+n \hbar \omega$, where $n=$ $0,1,2, \ldots$. The system has been equilibrated with a thermostat at a temperature T.

1. [5 points] Calculate the average \bar{n} of the quantum number n as a function of T.
2. [10 points] Calculate the root-mean-square fluctuation

$$
\Delta n \equiv\left(\overline{(n-\bar{n})^{2}}\right)^{1 / 2}
$$

and the relative fluctuation

$$
v \equiv \frac{\Delta n}{\bar{n}}
$$

as functions of T.
3. [5 points] Show that $v>1$ at any temperature.
4. [10 points] For one of the oscillators, let \tilde{p}_{1} be the probability of finding it in an excited state with $n>1$. In other words, if numerous measurements of n have been made, \tilde{p}_{1} is the fraction of the measurements that gave $n>1$. Calculate \tilde{p}_{1} and sketch qualitatively its dependence on T. Explain the physical meaning of this plot.

Problem 3 [30 points]
Consider a gas in equilibrium with a solid surface containing ν identical adsorption sites per unit area. The energy of an adsorption site is zero if it is unoccupied, ε_{1} if singly occupied, and ε_{2} if doubly occupied. These energies are independent of whether neighboring adsorption sites are occupied or vacant. The temperature of the system is T and the chemical potential of particles in the gas is μ. Apply the grand canonical formalism to calculate:

1. [10 points] The average number of adsorbed particles per unit area.
2. [10 points] The average energy of the adsorbed particles per unit area.
3. [10 points] The average entropy of the adsorbed particles per unit area.

Problem 4 [20 points]
Consider a three-dimensional free electron gas at zero temperature (degenerate electron gas). For an arbitrary axis x,

1. [10 points] Calculate the mean-square projection $\overline{v_{x}^{2}}$ of the electron velocity on x.
2. [10 points] Calculate average speed $\overline{v_{\perp}}$ of the electrons in the plane normal to x. Express your answers in terms of the Fermi energy ε_{F} and electron mass m.

Formula Sheet

Moments of the Gaussian function:

$$
\begin{equation*}
M_{n}=\int_{0}^{\infty} x^{n} e^{-x^{2}} d x \tag{1}
\end{equation*}
$$

Selected values: $M_{0}=\sqrt{\pi} / 2, M_{1}=1 / 2, M_{2}=\sqrt{\pi} / 4, M_{3}=1 / 2, M_{4}=3 \sqrt{\pi} / 8, M_{5}=1$, $M_{6}=15 \sqrt{\pi} / 16$.

