Qualifying exam - August 2014

Statistical Mechanics

You can use one textbook. Please write legibly and show all steps of your derivations. Note the Formula Sheet attached.

Problem 1 [20 points]

Consider a substance composed of identical particles of mass m. Using classical statistics, calculate the most probable value, K_m , of the kinetic energy K of the center of mass of a particle. Compare it with the canonical average kinetic energy \bar{K} of a particle. If the two values are different, explain why.

Problem 2 [30 points]

Consider a system of localized identical quantum harmonic oscillators with an angular frequency ω . The energy of an oscillator is quantized by $\varepsilon_n = \hbar \omega/2 + n\hbar \omega$, where $n = 0, 1, 2, \dots$ The system has been equilibrated with a thermostat at a temperature T.

- 1. [5 points] Calculate the average \bar{n} of the quantum number n as a function of T.
- 2. [10 points] Calculate the root-mean-square fluctuation

$$\Delta n \equiv \left(\overline{\left(n-\bar{n}\right)^2}\right)^{1/2}$$

and the relative fluctuation

$$v \equiv \frac{\Delta n}{\bar{n}}$$

as functions of T.

- 3. [5 points] Show that v > 1 at any temperature.
- 4. [10 points] For one of the oscillators, let \tilde{p}_1 be the probability of finding it in an excited state with n > 1. In other words, if numerous measurements of n have been made, \tilde{p}_1 is the fraction of the measurements that gave n > 1. Calculate \tilde{p}_1 and sketch qualitatively its dependence on T. Explain the physical meaning of this plot.

Problem 3 [30 points]

Consider a gas in equilibrium with a solid surface containing ν identical adsorption sites per unit area. The energy of an adsorption site is zero if it is unoccupied, ε_1 if singly occupied, and ε_2 if doubly occupied. These energies are independent of whether neighboring adsorption sites are occupied or vacant. The temperature of the system is T and the chemical potential of particles in the gas is μ . Apply the grand canonical formalism to calculate:

- 1. [10 points] The average number of adsorbed particles per unit area.
- 2. [10 points] The average energy of the adsorbed particles per unit area.
- 3. [10 points] The average entropy of the adsorbed particles per unit area.

Problem 4 [20 points]

Consider a three-dimensional free electron gas at zero temperature (degenerate electron gas). For an arbitrary axis x,

- 1. [10 points] Calculate the mean-square projection $\overline{v_x^2}$ of the electron velocity on x.
- 2. [10 points] Calculate average speed $\overline{v_{\perp}}$ of the electrons in the plane normal to x.

Express your answers in terms of the Fermi energy ε_F and electron mass m.

Please note the Formula Sheet attached

Formula Sheet

Moments of the Gaussian function:

$$M_n = \int_0^\infty x^n e^{-x^2} dx.$$
⁽¹⁾

Selected values: $M_0 = \sqrt{\pi}/2$, $M_1 = 1/2$, $M_2 = \sqrt{\pi}/4$, $M_3 = 1/2$, $M_4 = 3\sqrt{\pi}/8$, $M_5 = 1$, $M_6 = 15\sqrt{\pi}/16$.