Qualifying exam - August 2013

Statistical Mechanics

You can use one textbook. Please write legibly and show all steps of your derivations. Note the Formula Sheet attached.

Problem 1 [20 points]
Consider a system of non-interacting identical localized oscillators. Using the classical Hamiltonian

$$
\begin{equation*}
H=\frac{p^{2}}{2 m}+\frac{m \omega^{2}}{2} x^{2} \tag{1}
\end{equation*}
$$

(m is the particle mass and x displacement from equilibrium) calculate

1. [10 points]

$$
\begin{equation*}
\overline{\left(x^{2}-\overline{x^{2}}\right)^{2}} \tag{2}
\end{equation*}
$$

2. [10 points]

$$
\begin{equation*}
\overline{\left(p^{2}-\overline{p^{2}}\right)^{2}} \tag{3}
\end{equation*}
$$

Problem 2 [20 points]
Calculate the average energy per photon in black-body radiation (total energy divided by the number of photons). Show that this energy is approximately $\varepsilon \approx 2.701 \mathrm{kT}$.

Problem 3 [30 points]
Two-dimensional universe! Imagine that our universe is two-dimensional (2D). By analogy with the 3D theory of black-body radiation, develop a similar theory for a 2D universe. Specifically, consider a cavity of an area (2D "volume") A filled with black-body radiation at a temperature T. Derive the following thermodynamic properties:

1. [5 points] Helmholtz free energy $F(T, A)$.
2. [3 points] Entropy $S(T, A)$.
3. [3 points] Radiation pressure $p(T)$.
4. [4 points] Energy $E(T, A)$. Is the Stefan-Boltzmann Law still valid?
5. [4 points] Specific heat $C_{v}(T, A)$.
6. [5 points] Total number of photons $N(T, A)$.
7. [6 points] Fundamental equation of state $S(E, A)$.

Problem 4 [30 points]

Consider a gas in equilibrium with a solid surface containing identical adsorption sites. When a molecule adsorbs, its energy changes by $\varepsilon<0$ due to chemical interaction with the surface. In addition, it acquires a magnetic moment m which can be aligned either parallel or anti-parallel to an applied magnetic field H. Interaction between the adsorbed
molecules can be neglected. For given temperature T and chemical potential μ in the gas, apply the grand-canonical formalism to

1. [8 points] Calculate the average fraction of surface sites occupied by molecules.
2. [7 points] Calculate the average magnetic moment \bar{m} per surface site.
3. Now consider the small-field limit, i.e., $m H \ll k T$ at fixed values of ε and μ.

3a.[7 points] Show that the magnetic moment of the surface is proportional to H. 3b.[8 points] Find the mean-squared fluctuation $\overline{(m-\bar{m})^{2}}$.

Formula Sheet

Riemann's zeta function:

$$
\begin{equation*}
\varsigma(n)=\frac{1}{(n-1)!} \int_{0}^{\infty} \frac{x^{n-1}}{e^{x}-1} d x \tag{4}
\end{equation*}
$$

Selected values: $\varsigma(2)=\pi^{2} / 6, \varsigma(3) \approx 1.202$ and $\varsigma(4)=\pi^{4} / 90$.
Moments of the Gaussian function:

$$
\begin{equation*}
M_{n}=\int_{0}^{\infty} x^{n} e^{-x^{2}} d x \tag{5}
\end{equation*}
$$

Selected values: $M_{0}=\sqrt{\pi} / 2, M_{1}=1 / 2, M_{2}=\sqrt{\pi} / 4, M_{3}=1 / 2, M_{4}=3 \sqrt{\pi} / 8, M_{5}=1$, $M_{6}=15 \sqrt{\pi} / 16$.

