Qualifying exam-Spring 2023

Statistical Mechanics

You can use one textbook. Please write legibly and show all steps of your derivations.
Problem 1 [20 points]:
A resistor with resistance R is held at a constant temperature T. Current I is passed through the resistor for time interval Δt.
(a) [5 points] What is the change in the entropy of the resistor?
(b) [5 points] What is the change in the entropy of the universe?
(c) [5 points] What is the change in the internal energy of the universe?
(d) [5 points] What is the change in the Helmholtz free energy of the universe?

Problem 2 [30 points]:
(a) [5 points] Derive the following Maxwell relation:

$$
\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial p}{\partial T}\right)_{V}
$$

(b) [5 points] Maxwell found that the electromagnetic radiation (photon gas) in an evacuated vessel of volume V, has a pressure which is equal to $1 / 3$ of the energy density: $P=(1 / 3)$ $u(T)=U(T) / 3 V$. Using the relation obtained in part (a) combined with 1 th and 2 th laws of thermodynamics prove that $u(T)$ satisfies the following equation:

$$
u=\frac{T d u}{3 d T}-\frac{1 u}{3}
$$

(c) [5 points] Solve this equation for u to obtain Stephan-Boltzmann's law.
(d) [10 points] In the big-bang theory, the radiation energy which is initially confined in a small region adiabatically expands in a spherically symmetric way. Based on thermodynamic considerations together with results from part (b), find a relation between the temperature and the radius of the volume of radiation. How does the temperature changes as the radiation expands?
(e) [5 points] Find the entropy of the electromagnetic radiation as a function of T and V .

Problem 3 [15 points]:
The entropy of a paramagnet in the presence of an applied magnetic field is given by:
$S=S_{0}-C U^{2}$,
where U is the energy of the system and C is a constant.
(a) (5 points) Find the energy U of the system as a function of temperature T.
(b) (5 points) Sketch U versus T for all values of $\mathrm{T}(-\infty<T<\infty)$ assuming $\mathrm{C}>0$.
(c) (5 points) Describe the physical interpretation of the negative temperature in part (b).

Problem 4 [15 points]:

Consider a 1D chain consisting of n segments (Figure 1) where $n \gg 1$. The length of each segment is a when the long dimension of the segment is parallel to the chain and zero when it is vertical (Each segment has just two states, a horizontal and a vertical one). The distance between the chain ends is $n x$.

(a) (5 points) Find the entropy of the chain as a function of a and x.
(b) (5 points) Derive a relation between the tension F necessary to maintain the distance $n x$ and the temperature T of the chain assuming the joints turn freely. Hint: You may want to find the mean length of a segment.
(c) (5 points) Show that at high temperatures your answer in part (b) leads to Hook's law.

Problem 5 [20 points]:

Consider a system of two non-interacting particle in a canonical ensemble at temperature T. Each particle can be in 5 different states with energies $E=n \varepsilon$, where $\mathrm{n}=0,1,2,3,4$.
(a) [5 points] Compute the partition function in a classical Maxwell-Boltzmann approximation.
(b) [5 points] Compute the partition function assuming Fermi-Dirac statistics.
(c) [5 points] Compute the partition function assuming Bose-Einstein statistics.
(d) [5 points] Compare these partition functions in the limit of high temperatures $\left(k_{B} T \gg\right.$ ε) and low temperatures $\left(k_{B} T \ll \varepsilon\right)$.

Mathematical Formulas:

$$
\begin{gathered}
\sum_{0}^{\infty} x^{n}=\frac{1}{1-x} \\
\sum_{k=0}^{n} x^{k}=\frac{1-x^{n+1}}{1-x}
\end{gathered}
$$

