Qualifying exam - January 2020 ## Statistical Mechanics You can use one textbook. Please write legibly and show all steps of your derivations. Note the Formula Sheet attached. #### Problem 1 [26 points] Consider a system of non-interacting identical localized oscillators. Using the classical Hamiltonian $$H = \frac{p^2}{2m} + \frac{m\omega^2}{2}x^2,\tag{1}$$ (m is the particle mass and x displacement from equilibrium) calculate 1. [10 points] $$\overline{\left(x^2 - \overline{x^2}\right)^2}. (2)$$ 2. [16 points] $$\overline{\left(p^2 - \overline{p^2}\right)^2}. (3)$$ ## Problem 2 [24 points] Consider a free electron gas at T = 0 K. Suppose its volume is V and the number of electrons is N. 1. [4 points] Show that the total kinetic energy of the gas is $$U_0 = \frac{3}{5} N \varepsilon_F, \tag{4}$$ where ε_F is the Fermi energy. 2. [5 points] Derive the following relation between the gas pressure p and total energy U_0 : $$pV = \frac{2}{3}U_0. (5)$$ 3. [5 points] Show that the isothermal compressibility of the gas, $\beta_T = -(\partial \ln V/\partial p)_{T,N}$, equals $$\beta_T = \frac{3V}{2N\varepsilon_F}. (6)$$ 4. [5 points] The speed of sound in a gas is given by $$v_s = \left[\left(\partial p / \partial \rho \right)_T \right]^{1/2}, \tag{7}$$ where ρ is the gas density (mass per unit volume). Compute v_s for the free electron gas at T=0 K and compare it with the Fermi velocity v_F . 5. [5 points] If v is the electron speed, calculate \overline{v} , $\overline{(1/v)}$, and check if the inequality $\overline{v}(1/v) > 1$ is satisfied. ## Problem 3 [24 points] Imagine a harmonic solid with an isotropic dispersion relation $\omega = Ak^b$, where ω is the angular frequency of atomic vibrations, k is the wave number, and k > 0 and k > 0 are constants. Assuming that this dispersion relation holds for each of three polarizations of phonons, show that in the low-temperature limit the phonon contribution to the heat capacity of the solid is proportional to $T^{3/b}$. #### Problem 4 [26 points] A system has two quantum states, state 0 with energy 0 and state 1 with energy ε . These states can be occupied by non-interacting fermions from a particle and heat reservoir at a temperature T and chemical potential μ . - 1. [6 points] Calculate the grand partition function $\Gamma(T,\mu)$ of the system. - 2. Using the obtained $\Gamma(T,\mu)$, compute the following properties as functions of T and μ : - (a) [6 points] Average occupation numbers of the two states, \bar{n}_0 and \bar{n}_1 . - (b) [6 points] Average total energy \bar{E} . - (c) [8 points] The system entropy S. # Formula Sheet Moments of the Gaussian function: $$M_n = \int_0^\infty x^n e^{-x^2} dx. \tag{8}$$ Selected values: $M_0 = \sqrt{\pi}/2$, $M_1 = 1/2$, $M_2 = \sqrt{\pi}/4$, $M_3 = 1/2$, $M_4 = 3\sqrt{\pi}/8$, $M_5 = 1$, $M_6 = 15\sqrt{\pi}/16$.