Qualifying exam - January 2018

Statistical Mechanics

You can use one textbook. Please write legibly and show all steps of your derivations. A formula sheet is attached.

Problem 1 [15 points]
Prove that the following thermodynamic relations are valid for any single-component fluid:
(a) [5 points]

$$
\begin{equation*}
\left(\frac{\partial U}{\partial V}\right)_{T, N}=T\left(\frac{\partial P}{\partial T}\right)_{V, N}-P \tag{1}
\end{equation*}
$$

(b) [5 points]

$$
\begin{equation*}
\left(\frac{\partial p}{\partial T}\right)_{G, N}>0 \tag{2}
\end{equation*}
$$

(c) [5 points]

$$
\begin{equation*}
\left(\frac{\partial p}{\partial T}\right)_{\mu}>0 \tag{3}
\end{equation*}
$$

Problem 2 [15 points]
A three-dimensional classical oscillator has been equilibrated with a thermostat at a temperature T. The Hamiltonian of the oscillator is

$$
H(\mathbf{p}, \mathbf{r})=\frac{p^{2}}{2 m}+a_{x} x^{2}+a_{y} y^{2}+a_{z} z^{2}
$$

where a_{x}, a_{y} and a_{z} are constants.
(a) [5 points] Find the expectation values for the kinetic and potential energies of the oscillator.
(b) [10 points] Find the root-mean-square fluctuation of the total energy of the oscillator.

Problem 3 [35 points]
A system has two quantum states, state 0 with energy 0 and state 1 with energy ε. These states can be occupied by non-interacting fermions from a particle and heat reservoir at a temperature T and chemical potential μ.

1. [7 points] Calculate the grand partition function $\Gamma(T, \mu)$ of the system.
2. Using the obtained $\Gamma(T, \mu)$, compute the following properties as functions of T and μ :
(a) [9 points] Average occupation numbers of the two states, \bar{n}_{0} and \bar{n}_{1}.
(b) [9 points] Average total energy \bar{E}.
(c) [10 points] The system entropy S.

Problem 4 [35 points]
Consider a gas of ultra-relativistic spin- s fermions with the energy-momentum relation $\varepsilon=c p$, where c is the speed of light. The gas contains $N \gg 1$ particles occupying a three-dimensional volume V.
(a) [8 points] Calculate the Fermi energy as a function of V and N.
(b) $[8$ points $]$ Find the average energy per particle at zero temperature.
(c) $[9$ points $]$ Find the gas pressure P at zero temperature.
(d) $[10$ points $]$ Find the isothermal compressibility of the gas, $\beta_{T}=-(\partial \ln V / \partial P)_{T, N}$, at zero temperature.

Formula Sheet

Moments of the Gaussian function:

$$
\begin{equation*}
M_{n}=\int_{0}^{\infty} x^{n} e^{-x^{2}} d x \tag{4}
\end{equation*}
$$

Selected values: $M_{0}=\sqrt{\pi} / 2, M_{1}=1 / 2, M_{2}=\sqrt{\pi} / 4, M_{3}=1 / 2, M_{4}=3 \sqrt{\pi} / 8, M_{5}=1$, $M_{6}=15 \sqrt{\pi} / 16$.

