Qualifying exam-August 2022

Statistical Mechanics

You can use one textbook. Please write legibly and show all steps of your derivations.

Problem 1 [30 points]:

Consider a substance with the fundamental equation

 $U = Aexp\left(\alpha S + \beta M^2\right)$

where U is energy, M is the total magnetic moment, S is the entropy and A, α and β are some constants which can depend on N.

- (a) [5 points] Using the 1st law of thermodynamics derive a relation for M as a function of T and H. (H is magnetic field inside the substance).
- (b) [5 points] Calculate the isothermal magnetic susceptibility χ_T (T, H).
- (c) [10 points] Calculate the adiabatic magnetic susceptibility χ_s (T, H). Find the small field limit H \rightarrow 0.
- (d) [10 points] Derive a relation for Helmholtz Free energy F (T, M).

Problem 2 [20 points]:

Consider a harmonic solid with an isotropic dispersion relation given by $\omega = Bk^S$, where ω and k are the frequency and the wave number of vibrations existing in the solid, respectively. Show that the specific heat of the solid at low temperatures is proportional to $T^{3/S}$. Assume B and S are positive constants.

Problem 3 [20 points]:

Consider a degenerate gas (T=0K) consisting of N non-interacting relativistic electrons with a linear energy-momentum relation ($\varepsilon = v|p|$) enclosed in a volume V.

- (a) (10 points) Find the Fermi energy of the gas in terms of N and V.
- (b) (10 points) Find a relation relating pressure, energy, and volume of the gas.

Problem 4 [30 points]:

Consider a gas of non-interacting identical non-relativistic bosons with zero spin and mass m moving freely in a volume V.

- (a) (15 points) Find the energy and heat capacity in the limit of very low temperatures where chemical potential equals zero.
 Note: You do not need to evaluate all integrals and you can leave them in dimensionless form.
- (b) (15 points) Explain whether Bose-Einstein condensation can occur in a twodimensional boson gas and why. What about a one-dimensional gas?

Mathematical Formulas:

$$I_{s} = \int_{0}^{\infty} \frac{x^{s-1}}{e^{x} - 1} dx = (s-1)! \zeta(s), \text{ where } \zeta(s) \text{ is Riemann zeta function}$$

S	1	2	3	4
$\boldsymbol{\zeta}(\boldsymbol{s})$	8	π^2	1.202	π^4
		6		90