Qualifying exam-August 2020
 Statistical Mechanics

You can use one textbook. Please write legibly and show all steps of your derivations.

Problem 1 [35 points]

Consider a system of N non-interacting identical non-relativistic fermions of mass m trapped in a 1 D harmonic potential where the energy spectrum is given by:

$$
\epsilon_{n}=\hbar \omega\left(n+\frac{1}{2}\right)
$$

The gas is in equilibrium at temperature T. For simplicity, ignore the spin degeneracy of each level.
(a) (4 points) Find the Fermi energy $\varepsilon \mathrm{F}$ of the gas at $\mathrm{T}=0$ as a function of N .
(b) (8 points) Calculate the exact total energy per particle E / N at $\mathrm{T}=0$.
(c) (5 points) Calculate the grand canonical partition function $\Gamma(\mu, \mathrm{N})$ where μ is the chemical potential.
(d) (5 points) Calculate the grand potential. Do not attempt to evaluate the infinite sum.
(e) (5 points) Derive the average total number of particles $\bar{N}(\mu, T)$. Do not attempt to evaluate the infinite sum.
(f) (8 points) Find an explicit expression for $\bar{N}(\mu, T)$ in high temperature regime ($k_{B} T \ll \hbar \omega$) and $\zeta \ll 1$,
where $\zeta=e^{\beta \mu}$ is the fugacity of the gas.
You might use the following formulas for this problem:

$$
\begin{aligned}
& \sum_{n=0}^{N-1} n=\frac{N(N-1)}{2} \\
& \sum_{0}^{\infty} x^{n}=\frac{1}{1-x}
\end{aligned}
$$

Problem 2 [20 points]

Assume a harmonic solid has an isotropic dispersion relation given by $\omega=B k^{s}$, where ω is the frequency and k the wave number of a vibrational mode existing in a solid. Show that the specific heat of the solid at low temperatures is proportional to $T^{3 / S}$. Assume B and S are positive numbers.

Problem 3 [25 points]

Consider a gas of spinless particles inside a container with volume of 1 cubic meter and in contact with a heat reservoir at temperature T. Assuming the classical Hamiltonian

$$
H=\frac{p^{2}}{2 m}
$$

Where m is the particle mass, calculate:
(a) (5 points) One particle partition function Z .
(b) (20 points) The energy fluctuations per particle:

$$
\overline{(E-\bar{E})^{2}}=\overline{E^{2}}-\bar{E}^{2}
$$

Problem 4 [20 points]

A material is found to have a thermal expansivity $\alpha_{P}=v^{-1}\left(\frac{R}{P}+a / R T^{2}\right)$ and isothermal compressibility $\beta_{T}=v^{-1}\left[T f(p)+\frac{b}{p}\right]$.
Where $v=V / n$ is the molar volume.
(a) (5 points) Find $f(p)$.
(b) (10 points) Find $v=v(P, T)$.
(c) (5 points) Under what condition this material is stable.

Hint: Use Maxwell relations.

