QM Qualifier May 2014

Problem 1 (30points)

In a two-state system, two sets of basis kets, $|e\pm\rangle$ (denoted as e-basis) and $|d\pm\rangle$ (d-basis) are related as $|d\pm\rangle=\frac{1}{\sqrt{2}}(|e+\rangle\pm i|e-\rangle)$. The matrix form for a state vector $|\alpha\rangle=\begin{pmatrix}\cos\beta\\e^{i\varphi}\sin\beta\end{pmatrix}$ is given in d-basis and the operators of two observables are gives in e-basis as, $A=\begin{pmatrix}1&0\\0&-1\end{pmatrix}$ and $B=\begin{pmatrix}0&1\\1&0\end{pmatrix}$.

- (a) (10pts) Calculate the expectation value for A and B .
- (b) (10pts) Calculate the uncertainty for both observables.
- (c) (10pts) Verify the uncertainty principle.

Problem 2 (20points)

A state for simple harmonic oscillator of frequency ω starts (at t=0) from an arbitrary superposition of two number states as, $|\alpha,0\rangle=\cos\theta|n\rangle+e^{i\varphi}\sin\theta|l\rangle$, where θ and φ are real and n>l.

- (a) (5pts) Write the state vector at time t.
- (b) (5pts) What is the energy expectation value at time *t*. Is it a periodic function of time? If yes, what is the period?
- (c) (10pts) Calculate the expectation value of potential energy at time *t*. Is it a periodic function of time? If yes, what is the period?

Problem 3 (30 points)

Let $|jm\rangle$ represent the eigenket of the angular momentum J^2 and J_z of a system. The system is in a state $|\alpha\rangle$, which is a normalized superposition of $|11\rangle$, $|10\rangle$, and $|1-1\rangle$. If you measure J_z , the possible values are \hbar , 0, and $-\hbar$ with equal probability.

- (a) (10points) Find an explicit form of $|lpha\rangle$ as the superposition of the eigenket $|jm\rangle$. Write the density matrix.
- (b) (20points) Calculate expectation value $\langle J_x \rangle$, $\langle J_y \rangle$, and $\langle J_z \rangle$.

Problem 4 (20points)

Two spin-1/2 particles A and B are set to an entangled state, $|\alpha\rangle = \frac{1}{\sqrt{2}}(|+-\rangle - |-+\rangle)$. $|+-\rangle$ denotes particle A in spin-up state along z-direction while particle B in the spin-down state along z-direction.

- (a) (5 points) When S_z is measured for particle A, what are the possible values and corresponding probability if B is not measured?
- (b) (5 points) What results should be for the same question in (a) if particle B is measured at the same time to be in spin-up state?
- (c) (10 points) Along direction x, which is perpendicular to z-axis, S_x of both particles in state $|\alpha\rangle$ are measured. If the result for particle B is $S_{xB}=\frac{\hbar}{2}$, what should be the result for A? Show the steps leading to your answer.