You are allowed to use one textbook of your choice.

Problem 1 (25pts)

A spin-1/2 particle is initially in the eigenstate $|x+\rangle$ of S_x with the eigenvalue $\frac{\hbar}{2}$. A magnetic field of Larmor frequency ω is turned on at time t=0 in the x-z plane, making an angle θ with the z-axis.

- (a). (10pts) Find the state vector $|\alpha(t)\rangle$ at any given time t.
- (b). (10pts) Is $\langle x + | \alpha(t) \rangle$ a periodic function of time? If yes, what is the period T?
- (c). (5pts) Is $|\langle x + | \alpha(t) \rangle|$ a periodic function of time? If yes, what is the period T'?

Problem 2 (20pts)

A one-dimensional simple harmonic oscillator of angular frequency ω and mass m is in a number state $|n\rangle$.

- (a) (10pts) Calculate the uncertainties of position and momentum in this state.
- (b) (5pts) Prove that the uncertainty principle is satisfied in this state.
- (c) (5pts) What is the energy of the minimum uncertainty state?

Problem 3 (25pts)

Density matrices

$$\rho_1 = \frac{1}{4} \begin{pmatrix} 3 & -i \\ i & 1 \end{pmatrix}$$
 and $\rho_2 = \frac{1}{2} \begin{pmatrix} 1 & e^{-i\frac{\pi}{4}} \\ e^{i\frac{\pi}{4}} & 1 \end{pmatrix}$ represent two states of an ensemble of particles.

- (a) (5pts) Identify which of these states are pure or mixed.
- (b) (10pts) Find the state vector represented by the density matrix of each pure state.
- (c) (10pts) Apply a rotation about z-axis by an angle β . Calculate both density matrices after the rotation.

Problem 4 (30 pts)

A system consists of two different spin 1/2 particles. Let \vec{S}_1 and \vec{S}_2 be the individual spin operators and $\vec{S} = \vec{S}_1 + \vec{S}_2$ the total spin operator. The spin-spin coupling Hamiltonian is $H = \gamma \vec{S}_1 \cdot \vec{S}_2$, where γ is a real constant.

- (a). (10pts) Find the eigenstates and eigenvalues of H.
- (b). (10pts) Which of these eigenstates has overall zero spin in the z-direction, $\langle S_z \rangle = 0$?
- (c). (10pts) Pick a state with total $\langle S_z \rangle = 0$ and measure the spin projection S_{1z} of the first particle. What are the possible measured values, corresponding probabilities, and the post-measurement states of the full system?