Quantum Mechanics Qualifying Exam

Spring 2021
January 20 (9:00 am - 12:00 pm)

1. Identical non-interacting particles of mass m are loaded into a two-dimensional square box of side length L with a flat potential $(V=0)$ and impenetrable walls. Determine the lowest four energy levels and their degeneracies for one particle inside the box. Then, using this, find the lowest-energy states of a group of particles, and determine their total energies and degeneracies in the following cases:
(a) Three lowest-energy levels of three spinless bosons.
(b) Two lowest-energy levels of three spin $\frac{1}{2}$ fermions.
2. A particle of mass m moves in one dimension under the influence of some potential $V(x)$. Its wavefunction is given by:

$$
\psi(x, t)=A e^{-\alpha x^{2}-\beta x} e^{-i \omega t}
$$

(a) Find the potential $V(x)$.
(b) Find the mean position and mean momentum of the particle.
(c) Find the probability $P(p) d p$ that the particle's momentum is between p and $p+d p$.
3. (a) The normalized p-wave spherical harmonics expressed in spherical coordinates are:

$$
Y_{1}^{1}(\theta, \phi)=\sqrt{\frac{3}{8 \pi}} \sin \theta e^{i \phi} \quad, \quad Y_{1}^{0}(\theta, \phi)=\sqrt{\frac{3}{4 \pi}} \cos \theta \quad, \quad Y_{1}^{-1}(\theta, \phi)=-\sqrt{\frac{3}{8 \pi}} \sin \theta e^{-i \phi}
$$

Rewrite them in Cartesian coordinates using:

$$
\begin{aligned}
x & =r \sin \theta \cos \phi \\
y & =r \sin \theta \sin \phi \\
z & =r \cos \theta
\end{aligned}
$$

Show that:

$$
Y_{1}^{+1}-Y_{1}^{-1}=\sqrt{\frac{3}{2 \pi}} \frac{x}{r} \quad, \quad Y_{1}^{+1}+Y_{1}^{-1}=i \sqrt{\frac{3}{2 \pi}} \frac{y}{r}
$$

(b) Consider a particle with the wavefunction:

$$
\psi(x, y, z)=N(x-2 y+2 z) e^{-\alpha r}
$$

where $r=\sqrt{x^{2}+y^{2}+z^{2}}, N$ is a normalization constant and α is a parameter. Use the formulas from the part (a) to calculate the probabilities $P(m), m \in \mathbb{Z}$ that a measurement of the angular momentum L_{z} about the z-axis in the state $\psi(x, y, z)$ would yield $m \hbar$.
4. A collection of electrons is prepared by measuring their S_{y} spin projection and selecting only those that yield $s_{y}=+\frac{\hbar}{2}$. Then, a magnetic field $\mathbf{B}=B \hat{\mathbf{z}}$ is turned on at $t=0$. The Hamiltonian is $H=-\mu \mathbf{S B}$.
(a) Calculate the amplitudes $C_{\uparrow}(t)$ and $C_{\downarrow}(t)$ in the electrons' state $|\psi(t)\rangle=C_{\uparrow}(t)|\uparrow\rangle+C_{\downarrow}(t)|\downarrow\rangle$ at time $t>0$, where $|\uparrow\rangle$ and $|\downarrow\rangle$ are the eigenstates of S_{z} corresponding to the eigenvalues $+\frac{\hbar}{2}$ and $-\frac{\hbar}{2}$ respectively.
(b) What is the probability that the electron would be detected with its spin pointing in the positive x direction at time $t>0$?

Useful formulas:

- Gaussian integral:

$$
\int_{-\infty}^{\infty} d x e^{-\alpha x^{2}}=\sqrt{\frac{\pi}{\alpha}}
$$

- Pauli matrices:

$$
\begin{gathered}
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad, \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad, \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
e^{i \boldsymbol{\sigma} \hat{\mathbf{n}} \theta}=\cos \theta+i(\boldsymbol{\sigma} \hat{\mathbf{n}}) \sin \theta
\end{gathered}
$$

