Quantum Mechanics Qualifying Exam

Spring 2018

January 18 (9:00 am - 12:00 pm), Exploratory Hall 1004

1. Evaluate the x-p uncertainty product $\langle (\Delta x)^2 \rangle \langle (\Delta p)^2 \rangle$ for a one-dimensional particle confined between two rigid walls, experiencing the potential:

$$V(x) = \left\{ \begin{array}{ccc} 0 & , & 0 < x < a \\ \infty & , & \text{otherwise} \end{array} \right\}$$

Do this for the ground and all excited states.

2. A box containing a particle is divided into a right and left compartment by a thin partition. If the particle is known to be on the right (left) side with certainty, its state is represented by a "position" eigenstate $|R\rangle$ ($|L\rangle$), where we have neglected spatial variations within each half of the box. The most general state vector can be written as:

$$|\alpha\rangle = |R\rangle\langle R|\alpha\rangle + |L\rangle\langle L|\alpha\rangle = C_R|R\rangle + C_L|L\rangle$$

where $C_R = \langle R | \alpha \rangle$ and $C_L = \langle L | \alpha \rangle$ can be regarded as "wavefunctions". The particle can tunnel through the partition. This tunneling effect is characterized by the Hamiltonian:

$$H = \Delta \Big(|L\rangle \langle R| + |R\rangle \langle L| \Big)$$

where Δ is a real number with units of energy.

- (a) Find the normalized vectors of stationary states. What are the corresponding energies?
- (b) Suppose the system is in some arbitrary initial state $|\alpha\rangle$ at t=0, specified by $C_R=\langle R|\alpha\rangle$ and $C_L=\langle L|\alpha\rangle$ as above. What is the system's state at any time t>0?
- (c) Suppose that the particle is on the right side of the partition with certainty at t = 0. What is the probability of observing the particle on the left side as a function of time?
- 3. Calculate the correlation function

$$C(t) = \langle \hat{x}(t)\hat{x}(0)\rangle$$

in the ground state of a one-dimensional linear harmonic oscillator (of mass m and harmonic frequency ω), where $\hat{x}(t)$ is the position operator in the Heisenberg picture.

- 4. Calculate the three lowest energy levels together with their degeneracies for the following systems (the particles have mass m):
 - (a) Three non-interacting spin $\frac{1}{2}$ identical fermions in a 1D box of length L.
 - (b) Three non-interacting spin $\frac{1}{2}$ distinguishable particles in a 1D box of length L.
 - (c) Four non-interacting spin $\frac{1}{2}$ identical fermions in a 1D box of length L.
 - (d) Four non-interacting spin $\frac{1}{2}$ distinguishable particles in a 1D box of length L.
- 5. Consider an orbital angular momentum eigenstate $|l=2, m=0\rangle$. Suppose this state is rotated by an angle β about the y-axis. Find the probability for the new state to be found with $m=0,\pm 1,\pm 2$.

Hint: This is a challenging problem. Follow these steps for partial credit:

- (a) Let $\mathcal{R}_{\beta,\hat{\mathbf{y}}}$ be the operator that rotates by β about the y-axis. Expand $\mathcal{R}_{\beta,\hat{\mathbf{y}}}$ in the basis of the L_y eigenstates $|2, m_y\rangle$, where $m_y \in \{-2, -1, 0, 1, 2\}$. Just write the expansion using Dirac notation (you don't know what the states $|2, m_y\rangle$ look like yet).
- (b) Construct the 5-dimensional (2l+1=5 for l=2) matrix representation of the operators $L_+=L_x+iL_y$ and $L_-=L_x-iL_y$ in the usual basis that diagonalizes L_z (use the known effect of L_\pm on the normalized eigenstates of L_z). Then, construct the matrix representation of L_y .
- (c) Diagonalize L_y , i.e. find the normalized eigenvectors of L_y (representation of all $|2, m_y\rangle$) from the matrix constructed in part (b). Since the eigenvalues $\hbar m_y$ of L_y are known, you can proceed straight to the formulation of 5 equations with 5 unknowns for the 5 components of an eigenvector corresponding to a generic m_y . This system is not hard to solve: set one eigenvector component to 1 and determine the others. Then, substitute the 5 possible values for m_y , write the 5 eigenvectors and normalize each one of them.
- (d) Use (a) and (c) to rotate the initial state $|2,0\rangle \equiv |0,m_z=0\rangle$ (note m_z here not m_y) and represent it in the basis of $|2,m\rangle \equiv |2,m_z\rangle$. Calculate the probabilities P_m of measuring $m \equiv m_z$ in the rotated state.