name

You are allowed to bring one textbook of your choice.

Problem 1 (25 points) A spin-1/2 particle is in the eigenstate $|+\rangle$ corresponding to the eigenvalue $\hbar/2$ of the of S_z operator. A magnetic field in the *x*-*z* plane is turned on at time t = 0; it makes an angle θ with the *z*-axis and has Larmor frequency ω .

- (a) Find the state vector at any given time t.
- (b) Calculate the expectation value of spin $\left< ec{S}(t) \right>$ at any time t.

Problem 2 (25 points). The operator $D(\hat{n}, \varphi) = e^{-i\frac{\varphi}{2}\vec{\sigma}\cdot\hat{n}}$ represents a rotation by angle φ about the unit vector \hat{n} . Make two consecutive rotations, $D(\hat{n}_1, \varphi_1)$ followed by $D(\hat{n}_2, \varphi_2)$. Set the rotation axes in the *x*-*y* plane as, $\hat{n}_1 = (1, 0, 0)$, $\hat{n}_2 = (-\cos \theta, -\sin \theta, 0)$, and the rotation angles to $\varphi_1 = \varphi_2 = \pi$.

- (a) Prove that $U = D(\hat{n}_2, \varphi_2) D(\hat{n}_1, \varphi_1)$ is a rotation operator. Find the rotation axis \hat{n} and angle φ .
- (b) Rotate both axes \hat{n}_1 and \hat{n}_2 about the *z*-axis by an angle α to \hat{n}_1' and \hat{n}_2' . Find the rotation axis and angle for the operator $U' = D(\hat{n}_2', \pi)D(\hat{n}_1', \pi)$.
- (c) If both rotation angles in (a) deviate from π by a small amount 2ε , the operator becomes $U'' = D(\hat{n}_2, \pi + 2\varepsilon)D(\hat{n}_1, \pi + 2\varepsilon)$. Calculate the trace $tr(U^+U'')$. Make sure to obtain $\lim_{\varepsilon \to 0} tr(U^+U'') = tr(U^+U).$

Problem 3 (25 points) A coherent state of the one-dimensional simple harmonic oscillator is defined as an eigenstate of the annihilation operator $a: a |\lambda\rangle = \lambda e^{i\varphi} |\lambda\rangle$, where λ and φ are real.

(a) Prove that

$$\left|\lambda
ight
angle=\sum_{n=0}^{\infty}rac{\lambda^{n}e^{inarphi}}{\sqrt{n!}}e^{-\lambda^{2}/2}\left|n
ight
angle$$
 ,

where $|n\rangle$ denotes a number state.

(b) Prove that

$$\langle x | \lambda \rangle = \frac{1}{\sqrt[4]{\pi}\sqrt{x_0}} e^{-\frac{(x-x_c)^2}{2x_0^2} + ik_c x}$$

is a wavefunction that satisfies the eigen-equation of the annihilation operator represented in position space, where

$$x_c = \sqrt{2}x_0\lambda\cos\varphi$$
, $k_c = \sqrt{2}\frac{\lambda}{x_0}\sin\varphi$, and $x_0 = \sqrt{\frac{\hbar}{m\omega}}$

Problem 4 (25 points) A system consists of two identical spin 1/2 fermions at rest. Let \vec{S}_1 and \vec{S}_2 be the individual particle spin operators. The spin-spin coupling Hamiltonian is $H = \gamma \vec{S}_1 \cdot \vec{S}_2$, where γ is a real constant.

(a) Find the eigenstates and eigenvalues of H.

(b) If one measures S_{1z} in the ground state, what are the possible measured values and their corresponding probabilities?

(c) Pick one of the possible states after (b) and measure S_{2z} on it. What are the possible measurement outcomes and their corresponding probabilities?