\qquad
You are allowed to bring one textbook of your choice.

Problem 1 (25 points) A spin-1/2 particle is in the eigenstate $|+\rangle$ corresponding to the eigenvalue $\hbar / 2$ of the of S_{z} operator. A magnetic field in the $x-z$ plane is turned on at time $t=0$; it makes an angle θ with the z-axis and has Larmor frequency ω.
(a) Find the state vector at any given time t.
(b) Calculate the expectation value of $\operatorname{spin}\langle\vec{S}(t)\rangle$ at any time t.

Problem 2 (25 points). The operator $D(\hat{n}, \varphi)=e^{-i \frac{\varphi}{2} \vec{\sigma} \cdot \hat{n}}$ represents a rotation by angle φ about the unit vector \hat{n}. Make two consecutive rotations, $D\left(\hat{n}_{1}, \varphi_{1}\right)$ followed by $D\left(\hat{n}_{2}, \varphi_{2}\right)$. Set the rotation axes in the $x-y$ plane as, $\hat{n}_{1}=(1,0,0), \hat{n}_{2}=(-\cos \theta,-\sin \theta, 0)$, and the rotation angles to $\varphi_{1}=\varphi_{2}=\pi$.
(a) Prove that $U=D\left(\hat{n}_{2}, \varphi_{2}\right) D\left(\hat{n}_{1}, \varphi_{1}\right)$ is a rotation operator. Find the rotation axis \hat{n} and angle φ.
(b) Rotate both axes \hat{n}_{1} and \hat{n}_{2} about the z-axis by an angle α to $\hat{n}_{1}{ }^{\prime}$ and $\hat{n}_{2}{ }^{\prime}$. Find the rotation axis and angle for the operator $U^{\prime}=D\left(\hat{n}_{2}{ }^{\prime}, \pi\right) D\left(\hat{n}^{\prime}{ }^{\prime}, \pi\right)$.
(c) If both rotation angles in (a) deviate from π by a small amount 2ε, the operator becomes $U^{\prime \prime}=D\left(\hat{n}_{2}, \pi+2 \varepsilon\right) D\left(\hat{n}_{1}, \pi+2 \varepsilon\right)$. Calculate the trace $\operatorname{tr}\left(U^{+} U^{\prime \prime}\right)$. Make sure to obtain $\lim _{\varepsilon \rightarrow 0} \operatorname{tr}\left(U^{+} U^{\prime \prime}\right)=\operatorname{tr}\left(U^{+} U\right)$.

Problem 3 (25 points) A coherent state of the one-dimensional simple harmonic oscillator is defined as an eigenstate of the annihilation operator $a: a|\lambda\rangle=\lambda e^{i \varphi}|\lambda\rangle$, where λ and φ are real.
(a) Prove that

$$
|\lambda\rangle=\sum_{n=0}^{\infty} \frac{\lambda^{n} e^{i n \varphi}}{\sqrt{n!}} e^{-\lambda^{2} / 2}|n\rangle,
$$

where $|n\rangle$ denotes a number state.
(b) Prove that

$$
\langle x \mid \lambda\rangle=\frac{1}{\sqrt[4]{\pi} \sqrt{x_{0}}} e^{-\frac{\left(x-x_{c}\right)^{2}}{2 x_{0}^{2}}+i k_{c} x}
$$

is a wavefunction that satisfies the eigen-equation of the annihilation operator represented in position space, where

$$
x_{c}=\sqrt{2} x_{0} \lambda \cos \varphi, k_{c}=\sqrt{2} \frac{\lambda}{x_{0}} \sin \varphi, \text { and } x_{0}=\sqrt{\frac{\hbar}{m \omega}}
$$

Problem 4 (25 points) A system consists of two identical spin $1 / 2$ fermions at rest. Let \vec{S}_{1} and \vec{S}_{2} be the individual particle spin operators. The spin-spin coupling Hamiltonian is $H=\gamma \vec{S}_{1} \cdot \vec{S}_{2}$, where γ is a real constant.
(a) Find the eigenstates and eigenvalues of H.
(b) If one measures $S_{1 z}$ in the ground state, what are the possible measured values and their corresponding probabilities?
(c) Pick one of the possible states after (b) and measure $S_{2 z}$ on it. What are the possible measurement outcomes and their corresponding probabilities?

