Quantum Mechanics Qualifying Exam

Fall 2021

August 18 (9:00 am - 12:00 pm)

1. Consider a physical system with a three-dimensional state space. An orthonormal basis of the state space is chosen. In this basis, the Hamiltonian is represented by the matrix:

$$
H=\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

(a) What are the possible results when the energy of the system is measured?
(b) A particle is in the state $|\psi\rangle$ represented in this basis as

$$
|\psi\rangle \sim \frac{1}{\sqrt{3}}\left(\begin{array}{c}
i \\
-i \\
i
\end{array}\right)
$$

Find the expectation values $\langle H\rangle,\left\langle H^{2}\right\rangle$ and the uncertainty ΔH in this state.
2. A state for a simple harmonic oscillator of frequency ω starts evolving (at $t=0$) from an arbitrary superposition of two number states

$$
|\alpha, 0\rangle=\cos \theta|n\rangle+e^{i \phi} \sin \theta|l\rangle
$$

where θ, ϕ are real and $n>l$.
(a) Derive the state vector at arbitrary time t.
(b) What is the energy expectation value at time t ? Is it a periodic function of time? If yes, what is the period?
(c) Calculate the expectation value of potential energy at time t. Is it a periodic function of time? If yes, what is the period?
3. A molecule is rotating around its center of mass. The Hamiltonian is

$$
H=\frac{L_{x}^{2}+L_{y}^{2}}{2 I_{a}}+\frac{L_{z}^{2}}{2 I_{b}}
$$

where I_{a} and I_{b} are the moments of inertia, and L_{x}, L_{y}, L_{z} are the orbital angular momentum operators.
(a). Find the energy eigenvalues and eigenstates.
(b) Consider a state described by the normalized angular wave function

$$
\psi(\theta, \phi)=\sqrt{\frac{3}{4 \pi}} \sin \theta \cos \phi
$$

where θ and ϕ the polar and azimuthal angles respectively. Compute the expectation value of L_{z} in the state ψ.
(c). Suppose L_{z} is measured in the above state ψ and the result is $+\hbar$. Immediately afterwards, L_{x} is measured. Find the uncertainty (standard deviation) ΔL_{x} in this measurement.
4. In a hydrogen atom, the wavefunction $\psi(\mathbf{r})$ describes the motion of the electron relative to the proton (i.e. $\mathbf{r}=\mathbf{r}_{\mathrm{e}}-\mathbf{r}_{\mathrm{p}}$, where \mathbf{r}_{e} and \mathbf{r}_{p} are the electron's and proton's coordinates respectively). If the atom is localized at the origin, show that the probability density of the proton is:

$$
P_{\mathrm{p}}\left(\mathbf{r}_{\mathrm{p}}\right)=\left(\frac{m_{\mathrm{e}}+m_{\mathrm{p}}}{m_{\mathrm{e}}}\right)^{3}\left|\psi\left(\frac{m_{\mathrm{e}}+m_{\mathrm{p}}}{m_{\mathrm{e}}} \mathbf{r}_{\mathrm{p}}\right)\right|^{2}
$$

[Hint: Since you are implicitly given $\psi(\mathbf{r})$, you'll need to work with the center-of-mass \mathbf{R} and relative \mathbf{r} coordinates. Start by constructing the expression for P_{p} in terms of the atom's two-body wavefunction. Use the fact that the atom is localized at the origin, i.e. the two-body wavefunction pins \mathbf{R} to zero.]

