PhD Qualifying Exam: Quantum Mechanics, Fall 2019 (Open book – Sakurai)

1. Evaluate the x-p uncertainty product $\langle (\Delta x)^2 \rangle \langle (\Delta p)^2 \rangle$ for the ground state and first excited state of a one-dimensional particle confined between two rigid walls,

$$V = \begin{cases} 0 & , & 0 < x < a \\ \infty & , & \text{otherwise} \end{cases}$$

- 2. Consider an electron confined in a potential $V(x) = \frac{1}{2}x^2$ and subjected to an electric field E_0 . Write down the ground state energy and wave function of the electron.
- 3. Consider a free particle of mass m and energy E moving in three dimensions. What is the most general wave function of the particle:
 - (a) If it is an eigenstate of energy?
 - (b) If the eigenstate is also an eigenstate of momentum?
 - (c) If the eigenstate is also an eigenstate of parity?
 - (d) If the eigenstate has zero average linear momentum?
 - (e) If the particle is in the eigenstate of angular momentum quantum number l = 2?
- 4. Consider a particle in the three-dimensional potential $V(r) = r^2$, where r is the radial distance from the origin.
 - (a) Write down the most general wave function of the particle in two different coordinate systems.
 - (b) If a particle is described by the wave function

$$\psi(x, y, z) = (x + y + 3z)f(r) , \qquad (1)$$

- i. Is it an eigenfunction of L^2 ? If so, what is the *l*-value (orbital quantum number)? If not, what are the possible values of *l* that we may obtain when L^2 is measured?
- ii. What are the probabilities for the particle to be found in all possible states with different values of the magnetic quantum number m_l ?
- 5. Consider an electron described by the Hamiltonian H,

$$H = \left(\begin{array}{cc} 1 & 1\\ 1 & 2 \end{array}\right)$$

- (a) At t = 0, we measure the energy of the electron. What possible values will we obtain?
- (b) At later time t, we measure the energy again. How is it related to the energy we measured at t = 0?
- (c) If at t = 0, the electron is equally likely to be in the two possible stationary states, write down its most general state vector at t = 0.
- (d) What is the probability that at time t = 5 the electron will be in a state different from its initial state?
- (e) Express the Hamiltonian in terms of Pauli matrices and calculate the magnetic field applied on the electron.