General Electrostatics

Derivation, interpretation, and applications of: Gauss' Law, Poisson and Laplace Equations, Green's Theorem, Forces, Energy, Capacitance, Method of Images, Multipole Expansion.

Boundary Value Methods in Electrostatics

Solution using Green Functions, Separation of Variables in cartesian, cylindrical, and spherical coordinates.

Electrostatics in Matter

Polarization, Bound Charges, Electrostatic Boundary Value Methods, Forces, Torques, Energy, and Capacitance

Magnetostatics

Derivation, interpretation, and applications of: Ampere's Law, Vector Potential, Forces, Torques, Energy, Inductance, Multipole Expansion.

Magnetostatics in Matter

Magnetization, Bound Currents, Magnetostatic Boundary Value Methods, Forces, Torques, Energy, and Inductance.

Boundary Value Methods in Magnetostatics

Separation of Variables in cartesian, cylindrical, and spherical coordinates.

Suggested literature: Classical Electrodynamics, 3rd Edition by J.D. Jackson, 1999.