Qualifying exam - January 2024

Classical Electrodynamics

You can use one textbook. Please write legibly and show all steps of your derivations. Note the Formula Sheet attached.

Problem 1 [25 points]

Consider two non-overlaping, spehercally symmetric charge distributions $\rho_{1}(r)$ and $\rho_{2}\left(r^{\prime}\right)$ centered at points separated by a distance R (Figure 1). Calculate the force between these distributions.

Figure 1: Two non-overlapping spherical charge distributions.

Problem 2 [25 points]
A spherical cavity of a radius R is carved in a unform linear dielectric medium with a permittivity ε. Capacitor plates at infinity produce a fixed uniform electric field \mathbf{E}_{0}. Calculate the electric field inside $(r<R)$ and outside $(r>R)$ the cavity .

Problem 3 [15 points]
A sphere rotating around its axis with angular velocity ω has a uniform mass density and a uniform surface charge density. The sphere has a total mass M and a net charge Q. Find its gyromagnetic ratio $G=m / L$, where m is the magnetic moment of the sphere and L is its mechanical angular momentum.

Problem 4 [35 points]
An infinitely long thick wire of radius R is made of an isotropic linear magnetic material with magnetic permeability μ (Fig. 2). The wire carries a current I with a current density distributed uniformly over the cross-section.

1. Find the magnetic field \mathbf{B} as a function of the radial distance r from the axis of the wire.
2. Find the magnetization of the material \mathbf{M} as a function of r.

3 . Find the volume bound current density \mathbf{J}_{b}.
4. Find the surface bound current density \mathbf{K}_{b}.
5. Find the total bound curent in the wire.

Figure 2: A thick wire made of a linear magnetic material carrying a uniform current I.

Formula Sheet

$$
\int \sin ^{3} \theta d \theta=\frac{\cos ^{3} \theta}{3}-\cos \theta
$$

