E \& M Qualifying Exam

Tuesday, January 17th, 2023

This exam has four problems, each equally weighted.

1. Two long and straight conductors each carry a current I in opposing directions; their cross-sections are shown in the figure with black and gray fill. Current flows into the page on the right conductor; current flows out of the page on the left conductor. Assume a permeability of μ_{o} everywhere.

Find the magnetic field in (a) the empty space between the conductors and (b) the empty space outside of both conductors.

2. The cross-section of a long and straight rectangular duct with sides of length $2 a$ and b are shown in the following figure. The duct is grounded except in a region of width w centered on $y=b / 2$. In this region, the potential V has a maximum value of $(b / w) V_{o}$ at $y=b / 2$ and decreases linearly to zero at $y=b / 2-w / 2$ and $y=b / 2+w / 2$ (so that $V(y)$ has a triangular shape).

Find the potential in the duct in the limit that $w / b \rightarrow 0$.

3. A spherical capacitor with inner radius a and out radius b is filled with a variable dielectric $\epsilon=$ $\epsilon_{0}\left(1+\epsilon_{r} \cos ^{2} \theta\right)$, where θ is the polar angle.
(a) Find the capacitance. (b) If the inner surface is grounded and the outer surface is held at V_{o}, find the bound and free charge densities.
4. A thick hemispherical shell of inner radius a and outer radius b has a magnetization of $M_{o} \hat{\mathbf{z}}$.

(a) Find the bound current density.
(b) Find the magnetic field at the origin.
(c) Describe a procedure for computing the magnetic field for $r>b$.

