E \& M Qualifying Exam

Tuesday, January 19, 2021

This exam has three problems, each worth 33 points.

1. Five sides of a hollow conducting cube with side length a are grounded and one side is at potential V_{o}. (a) Find the potential at the center of the cube. (b) Starting with Laplace's equation in 3-D Cartesian coordinates, derive a a general equation for the potential $\Phi(x, y, z)$ in Cartesian coordinates. (c) Find $\Phi(x, y, z)$ inside of the cube.

2. A uniform line of charge with charge density λ_{o} and length $8 a$ is formed in the shape of a square with side length $2 a$. The square lies in the $x-y$ plane and is centered on the origin.
Find an expression for the potential on the z-axis for $z<\sqrt{2} a$ in the form $\Phi(z)=A+B z+C z^{2}+D z^{3}$, where the constants $A-D$ depend on one or more of $\lambda_{o}, a, \epsilon_{o}$, and dimensionless integrals (you do not need to evaluate the integrals).
3. The current loop of radius b shown in the figure is in the $z=d$ plane carries a current I. There is an external magnetic field of

$$
\mathbf{B}_{e x t}=\frac{\mu_{o}}{4 \pi} \frac{m_{o}}{r^{3}}(2 \cos \theta \hat{\mathbf{r}}+\sin \theta \hat{\boldsymbol{\theta}})
$$

that is due to a magnetic dipole at the origin.
Compute the force and torque on the loop.

