E \& M Qualifying Exam

Fall 2020
Tuesday, August 18, 2020 1:00 pm - 4:00 pm

This exam has four problems, each worth 25 points.

1. For a configuration of charges and currents confined within a volume \mathcal{V}, (a) show that

$$
\int_{\mathcal{V}} \mathbf{J} d^{3} x=\frac{d \mathbf{p}}{d t}
$$

where \mathbf{p} is the dipole moment. (b) Explain why the relationship $\mathbf{J}=\boldsymbol{\nabla} \times \mathbf{B} / \mu_{o}$ cannot be used.
2. A total charge Q is uniformly distributed on the surface of a sphere of radius a that rotates with an angular velocity of $\boldsymbol{\omega}$.

Find the magnetic dipole moment \mathbf{m}.
3. A long pipe runs parallel to the z-axis. Two of the surfaces are at a potential V and two are grounded. The cross-section is square and the sides have unit length.

Find the potential inside of the pipe.
4. A line of charge with density λ lies along $-L \leq z \leq L$.

In terms of the spherical harmonics, $Y_{l m}$, find the potential for $r \gg L$.

