E \& M Qualifying Exam

Fall 2018
August 22, 2018; 1:00 pm - 4:00 pm

This exam has four problems, each worth 25 points.

1. A charged conducting sphere of radius R is embedded in a material that is infinite in extent and has a permittivity of ϵ. The external electric field is uniform and has a magnitude of E_{o}. The sphere has a net charge of q.

Find the electric field (a) inside and (b) outside the sphere.
2. A non-conducting spherical shell of radius R is centered at the origin. The surface for $z>0$ has a net charge q_{o} that is uniformly distributed. The surface for $z<0$ has a net charge of $-q_{o}$ that is uniformly distributed.

Find an expression for the electrostatic potential in terms of r and the first four Legendre polynomials, $P_{l}(\theta)$, for $r>R$.
3. An infinitely long wire has a radius R and permeability μ_{1} carries a current I with a uniform current density. The wire is placed into a region of space with a uniform field \mathbf{H} with magnitude H_{o} and direction perpendicular to the axis of the wire.

Determine \mathbf{H} inside the wire.
4. For electrostatic potentials Ψ and charge densities ρ, the following relationship holds

$$
\int_{V} \rho_{2} \Psi_{1} d^{3} x=\int_{V} \rho_{1} \Psi_{2} d^{3} x
$$

(a) Derive this equation. (b) What is the volume V ? (c) Given that ρ_{1} corresponds to a charge Q_{1} uniformly distributed on a sphere of radius R and ρ_{2} corresponds to a charge Q_{2} uniformly distributed in the volume of this sphere, show explicitly that the above relationship holds.

