Classical Mechanics Qualifier Exam January 2019

- 1. Two point masses, m_1 and m_2 are connected by a spring passing through a hole in a smooth table so that m_2 rests on the table surface and m_1 hangs suspended.
 - a. Assuming m_1 moves only in a vertical direction (line), what are the generalized coordinates for the system?
 - b. Write the Lagrange equations for the system and discuss the physical significance any of them may have.
 - c. Reduce the problem to a single second-order differential equation.
 - d. Calculate the first integral of motion.
- 2. Consider a linear symmetrical triatomic molecule. In the equilibrium condition, two atoms of mass *m* symmetrically located on each side of an atom of mass *M*. All three atoms are on straight line, the equilibrium distances apart being *d*. Consider vibrations only along the line of the molecule. The interatomic potential can be approximated by two springs of force constant *k* joining the three atoms.
 - a. Sketch clearly the problem. Label all parts.
 - b. Write down the potential and kinetic energies and explain each of them.
 - c. Write down the secular equation and determine the eigenvalues. What is the physical meaning of these eigenvalues?
 - d. Determine the eigenvectors of the normal modes and discuss each case, clearly sketching the modes.
- 3. The Hamiltonian for a system has the form

$$H = \frac{1}{2} \left(\frac{1}{q^2} + p^2 q^5 \right).$$

- a. Find the equation of motion for *q*.
- b. Find the canonical transformation that reduces H to the form of a harmonic oscillator. Show that the solution for the transformed variables is such that the equation of motion found in part a is satisfied.
- 4. Derive the Canonical equations of Hamilton using the Legendre transformation for the Hamiltonian.