Classical Mechanics Qualifier Exam (August 15, 2023)
 9:00 a.m. - 12:00 p.m.

NAME:

G-NUMBER:

Important instructions:

- In your solutions explain the details of your derivations.
- Present your solutions in a clean and clear way.
(1.) Suppose that a particle moved in a plane and the potential of the particle depends only on the distance from the origin: $V(r)$
(a) Write the Lagrange equation for the system.
(b) Calculate the Euler-Lagrange equations and show that the force is directed along the radius vector from the origin to the particle.
(30 points)
(2.) Consider a particle that describes a circular orbit under the influence of an attractive central force directed toward a point on the circle.
(a) Derive the Lagrangian L in polar coordinates with a radial distance r and azimuthal angle of θ and sketch the problem.
(b) Derive the Lagrangian equations of motion.
(c) Write down the canonical momentum for θ, the equation of motion in θ-direction, and the first integral involving the constant magnitude of the angular momentum, l.
(d) Derive a second order differential equation involving r (and the constant magnitude of the angular momentum) only.
(e) Derive the equation of the orbit

$$
\begin{equation*}
f(r)=\frac{l}{r^{2}}\left[\frac{\mathrm{~d}}{\mathrm{~d} \theta}\left(\frac{l}{m r^{2}} \frac{\mathrm{~d} r}{\mathrm{~d} \theta}\right)-\frac{l}{m r}\right] \tag{1}
\end{equation*}
$$

(50 points)
(3.) Derive the Canonical equations of Hamilton using the Legendre transformation for the Hamiltonian. (20 points)
(100 points in total.)

