Classical Mechanics Qualifier Exam (18 August 2020)

NAME:

G-NUMBER:

(1.) Derive the Canonical equations of Hamilton using the Legendre transformation for the Hamiltonian. (30 points)
(2.) A point particle moves in space under the influence of a force derivable from a generalized potential U of the form:

$$
\begin{equation*}
U(\mathbf{r}, \mathbf{v})=V(r)+\boldsymbol{\gamma} \cdot \mathbf{L} \tag{1}
\end{equation*}
$$

where \mathbf{r} is the radius vector from a fixed point, L is the angular momentum about that point, and $\boldsymbol{\gamma}$ is a fixed vector in space.
(a) State the Lagrange's equation.
(b) Write down the equation for the generalized force Q_{j} as a function of the generalized potential $U(q, \dot{q})$?
(c) Find the components of the force on the particle in both Cartesian and spherical polar coordinates, on the the basis of the relationship between Q_{j} and $U(q, \dot{q})$ (the relationship from (b)).
(d) Show that the components in the two coordinate systems are related to each other as in

$$
\begin{equation*}
Q_{j}=\sum_{i} \mathbf{F}_{i} \cdot \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} \tag{2}
\end{equation*}
$$

(40 points)
(3.) Starting from the principle least action (or Hamilton's principle) derive Lagrange's equations. (30 points)
(100 points in total.)

